NASA Contractor Report 195075

A Generic Interface Element for
COMET-AR

Susan L. McCleary
Lockheed Engineering & Sciences Company, Hampton, Virginia

Mohammad A. Aminpour
Apnalytical Services & Materials, Inc., Hampton, Virginia

Contracts NAS1-19000 and NAS1-19700

March 1995

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

S

N95-26199

A GENERIC

(NASA-CR-195075)

(Lockheed Engineering and Sciences

INTERFACE ELEMENT FOR COMET-AR
Corp.)

Unclas

163 p

G3/39 0048693

June 23, 1994

Preface

This report documents the implementation of an interface element capability within the COMET-AR
software system. The report is intended for use by both users of currently implemented interface elements
and developers of new interface element formulations. For guidance on the use of COMET-AR the reader
should refer to Ref. 1-1. A glossary is provided as an Appendix to this report for readers unfamiliar with the
jargon of COMET-AR. A summary of the currently implemented interface element formulation is presented in
Section 7.3 of this report. For detailed information on the formulation of this interface element, the reader is
referred to Refs. 1-8 through 1-10.

A Generic Interface Element for COMET-AR i

Table of Contents June 22, 1984

Iable of Contents
Partl. Introduction, e et I-1
B TR 14 1 ¢« Lo (¥ T { ' T 1-1
1.1, OVBIVIBW .. itiiiti it ietneeetaaanteetneensenneroetonseaanss 1-1
1.2. Whatis an “Interface Element?” s ereranatasreseacentaiaannas 1-2
1.3. Overview of the ImplementationStrategy 14
14. Organizationcciiiiiereninnrrernenennereneaaeano 1-8
1.5. Limitations, Implicit Assumptions, Conventions 1-9
16. Reference Framesccoiviiinntiiienrernneennanesanananns 1-10
1.7. RefBrBNCES ... it ittt ettt eeieeentonranetaseencansaansans 1-11
Partll. AnalysisExamplec.coiiiiiiiiiiiiiiiinnnns -1
2. ASimple AnalysisExampleccoiiiiiiiiiiiiiiiiiis 2-1
2.1, OVBIVIBWiiiiieritiannncaensonssassnanassnansennanans 2-1
2.2. Application: End-Loaded CantileverBeam 2-3
Partlll. Procedurescciiiiiutinneeeeneeneeeeannnesnennnnns -1
3. NewControlProcedurescciitiieernnnnronnnnanacns 3-1
3.1, OVBIVIBW ...ttt ittt iaceennrerscneatansaneensennssns 3-1
3.2. Analysis Control - Procedure SS_control 3-3
3.3. Macrosymbol Definitions - Procedure Initialize 3-11
3.4. Stress Recovery Control - Procedure Post FE_Stress 3-13
4. Interface ElementCoverProceduresc.cciiinraneennnn 4-1
4.1, OVBIVIBW .. .ottt ittt ittt eeareatenianaanr e 4-1
4.2. Interface Element Definition - Procedure El_Define 4-3
4.3. Interface Element Drilling Freedom Suppression - Procedure
Defn_ElFreedomsccoiiiiiiiininiinirenennnennonnnss 4-7
4.4. Interface Element Stiffness Matrix Generation -Procedure
Form_El Stiffnesscciiiiiiiirniiiii it iiiinannenns 4-9
5. Finite Element AnalysisProceduresccoveeen. 5-1
B, OVBIVIBW ...ttt ittt ittt ie e it 5-1
5.2. Finite Element Initialization - Procedure Initialize FE 5-3
5.3. Finite Element Drilling Freedom Suppression - Procedure
Defn_FE_Freedomscoiuininiarneinnnenennennnnanenns 5-7
5.4. Finite Element Consistent Load Definition - Procedure
Form _FE _FOrCeoi ittt ittt e iieienenaranneses 5-11
5.5. Finite Element Stiffness Matrix Formation - Procedure
Form_FE _SHffNeSScconiiiiirnniiiiiiiriieneannnnannns 5-15

il A Generic Interface Element for COMET-AR

June 22, 1994 Table of Contents

5.6. Finite Element Stress Recovery - Procedure Comp_FE_Stress 5-19
5.7. Compute Smoothed Nodal Stresses - Procedure
Comp_Nodal_Stressccvviiiiiirniininiiiiiiiinnnnn.. 5-23
6. Master Model Analysis Procedures B 6-1
70 R @ - 4 - 1 6-1
6.2. Master Model Generation - Procedure Merge_ SS 6-3
6.3. Master Model Assembly - Procedure A__ssemble_Master 6-7
6.4. Master Model Solution - Procedure Solve_Master 6-13
PartIV. ProCesSSOrSttt V-1
7. Interface Element Processorsc.coiiiiiiierinneeeninnnnnn. 7-1
% TR © Y- 4T 7-1
72. Processor El (Generic Interface Element Processor) 7-3
7.3. Processor El1 - Hybrid Variational (HybV) Interface Element 7-21
8. MasterModelGeneration ittt 8-1
B, OVEIVIEW ... i it e et et e 8-1
8.2. Processor MSTR - MasterModelGenerator 8-3
PartV. Developerinterfaceciiiiiiiinniinnnnn. V-1
9. Developerinterface i 9-1
0.1, OVOIVIOW ... ittt i e e et e et e 9-1
82. NewgSymbolscoiimiiiiiiiii i ittt 9-3
9.3. The Generic Interface Element ProcessorShell 9-5
9.4. The Generic Interface Element ProcessorCover 9-25
9.5. makefile Exampleciuiiiiiiritiiii i it 9-29
PartVI. DataObjectsi i, VI-1
10.NewDataObjectsiiiiririiii it ittt 10-1
10,1, OVBIVIBW i it e e e e e, 10-1
10.2. NewNodal Data Objectsciiviiiiniin it ietienrannns 10-3
10.3. ElementDataObjectsccoiiiiiiiinrin i, 10-56
Appendix A: GloSSary i e A-1

A Generic inwriace Element for COMET-AR i

Part I.
INTRODUCTION

A Generic Interface Element for COMET-AR

|. Introduction

June 22, 1994

THIS PAGE INTENTIONALLY BLANK

A Generic Imertace Element for COMET-AR

June 22, 1994 1. Introduction

1. Introduction

1.1. Overview

This report describes the implementation of an interface element capability within the COMET-AR
software system (Ref. 1-1) and contains a summary of the impiementation, a simple analysis example for the
new user, a description of the user interface (including generic procedures which may be used to access
interface elements), a description of the developer interface, and a description of new data structures. The
report has been designed for both users of existing interface elements and developers of new interface
elements and is organized as follows:

I. Introduction. Answers the questions:
« What is an interface element?
- What does an interface element do and why is it needed?
« How does an analysis change when interface elements are used?
« What are the limitations and assumptions of the element implementation?

Il. ASimple Analysis Example. Provides a simple example of an analysis
using an interface element.

Hl. Procedures. Describes new and modified procedures including:
« Generic control procedures
+» Interface element cover procedures
« Modified finite element analysis procedures
- Master model analysis procedures

IV. Processors. Describes the use of two new processors:
» The Generic interface Element Processor (El)
» The Master Model Processor (MSTR)

V. _Dem_oper Interface. Describes programming details of the new processors
including:

« Generic interface element processor shell
» Generic interface element processor cover
» Master model generation in processor MSTR

VI. Data Objects. Describes new data objects in the object oriented database
including:
« New nodal objects
+ New element objects

A. Glossary. Defines terms used throughout the document.

New users should find Parts | through IV the most useful. Developers of new interface elements are
directed to Parts I, V, and VI for programming information and Parts Il and Il for assistance in using the
software. Both users and developers should be famlliar with the COMET-AR system as described In
the COMET-AR Users’ Manual (Ref. 1-1).

A Generic Intertace Element for COMET-AR 1-1

PRECEDING PAGE BLANK NOT FILMED

1. Introduction June 22, 1954

1.2. What is an “Interface Element?”

An interface element is a special type of finite element which connects independently modeled finite
element substructures along their common interface. The connected finite element models need not have a
one-to-one correspondence between the nodes across the common boundary (i.e., they need not be nodally
compatible). The interface element is therefore particularly usetul for globallocal analyses and for analyses
involving component substructuring.

In the past, applications of coupled gioballocal analysis and component substructuring have required at
least partial, and often full, nodal compatiility across globallocal and substructure boundaries. Quite often,
the transition across substructure boundaries is performed through some form of mesh transitioning. One
technique uses either distorted quadrilateral or triangular finite elements to make the transition (called *htq”
and “hit” refinement respectively, in COMET-AR). Some have developed special elements which typically
connect two elements to one along a single boundary and are known by various names such as variable
order elements (Refs. 1-2, 1-3) and transition elements (Ref. 1-4). All of these special elements require some
degree of nodal compatibility (usually only two new elements may be connected to one original element).
One of the most common means of transitioning between different quadrilateral discretizations is through the
use of multipoint constraints which may be applied as constraints (e.g., *hc” refinement in COMET-AR) or
through a modification in the finite element formulation of the affected elements (Ref. 1-5). Both of these
constraint techniques require nodal compatibility similar to the compatibility required of the special elements.

1]

J1I

1012

with mesh transitioning without mesh transitioning attaching components without mesh transitioning

Figure 1.1. Examples of Mesh Transitions

Each of these transitioning techniques potentially introduces additional error into the solution due to
constraints or distortion and each also requires at least some degree of nodal compatibility. Several coupling
methods which do not require nodal compatibility (e.g., see Figure 1.1) on substructure or element
boundaries have been developed (Refs. 1-6, 1-7). However, these methods have also typically had difficulty
in maintaining solution accuracy, particularly near the common substructure boundaries. Recent work has
focused on the development of a means of connecting independently modeled substructures which maintains
solution accuracy (Refs. 1-8, 1-9). Several techniques for tying together two substructures (i.e., collocation,
least-squares, and hybrid variational) have been examined. it was concluded that the use of an independent
function to connect two independently modeled substructures through a hybrid variational formulation was an
effective method of connecting such substructures. The method preserves solution accuracy (of
displacements and stresses) across the common substructure boundaries. The interface element reported on
in Ref. 1-10 represents a generalization of this previous work.

1-2 A Generic Intorface Element for COMET-AR

June 22, 1994 1. introduction

Software implementation of the interface element concept was driven by three requirements: (1) the need
for a general implementation to accommodate potentially several different types of interface formulations; (2)
the need to extend, in the future, the hybrid variational formulation to include nonlinear and dynamic effects
and to permit its application in adaptive refinement; and (3) the need for a user-friendly environment in which
the interface technique could be used to solve realistic, potentially farge, structures problems. Original
prototype software served well during the “proof-of-concept” phase but required very large amounts of disk
space and large amounts of machine memory. it was also severely limited in its application in that it could not
process multiple interfaces, more than two substructures, or generally curved interfaces. By recasting the
interface tormulation in the form of an element (much like a finite element) and creating a new software
framework for the element implementation, all of the requirements are met. Developers of new interface
formulations have a platform of support software readily available and may insert new software kemels
without understanding the requirements of accessing the database. Extensions to the existing hybrid
variational formulation may be implemented by adding new kemel modules (subroutines). Because it was
implemented within a general-purpose software system, COMET-AR, the interface element can be used to
solve practical applications. This report provides a detailed description of the interface element
implementation.

A Generic inwrface Element for COMET-AR 13

1. Introduction June 22, 1994

1.3. Overview of the Implementation Strategy

COMET-AR (Ref. 1-1) is a modular software system composed of the standard finite element modules
(e.g., model definition, assembly) along with modules which perform error estimation and mesh refinement.
These modules are semi-independent FORTRAN executables called processors. The system allows for
extensions through the addition of both new processors and new command language procedures which
provide high level control, may operate on data using the command language CLAMP, and typically call
processors to perform the more compute-intensive tasks associated with a structural analysis.

The implementation of the interface element was accomplished by adding both new processors and new
procedures to COMET-AR. The flowchart in Figure 1.2 describes the solution process when using interface
elements. Initially, the user must define each substructure completely (i.e., node locations, element
connectivity, loads, boundary conditions, material and section properties). The substructure definitions serve
as input to the interface element definition which is accomplished through a new generic interface element
(El) processor (shown as the shaded boxes in the Figure). Interface elements are defined by the
substructures to which they are connected and may internally generate new dispiacement nodes (herein
called pseudo-nodes) and/or traction nodes (herein called alpha-nodes). Once the interface elements have
been defined, all element stiffness matrices are formed and unstiffened degrees-of-freedom (e.g., drilling
degrees-of-freedom) are suppressed. The various substructures are then merged into a single, giobal,
master model for the purposes of assembly and solution. The new master model processor, MSTR, (shown
as the large box in the Figure) combines all input substructures by renumbering nodes sequentially and then
copying and modifying the data needed to effect a solution (ie., element connectivity, active
degree-of-freedom tables, element matrices and vectors, nodal vectors). With all data in a single library file,
the standard assemblers and solvers may be used on the global master model. The MSTR processor may be
used after the solution has been obtained in order to extract substructure results from the master model. Note
that while n substructures are depicted in Figure 1.2, a single model may be used with interface elements
connecting various parts of the one defined model.

‘Substructure 1: Substructure 2: Substructure n:
Joint locations, slsment Joint loanons element | Joint locations, siement

conneclvity, loads, connectivity, loads, boundary connectvity, loads,
boundary conditions, etc. conditions, etc. a:n%nons oK.

Y L]]

Master Mode! Processor
Pre-Processor Post-Processor
Combine Substructres 1 through n into 8 single, master mmummwmw-pmommmum
model which will contain interface elements as individual for each individual substructure. This will allow this
element types. processor © stay transparent to the user.

N

Figure 1.2. Coupled Analysis Solution Strategy

The generic nature of the El processor facilitates the implementation of additional interface formulations
within the general-purpose framework thereby enabling future research in interfacing techniques. The
processor is designed so that an interface element developer is isolated from all user and database
interaction. The user interface for the interface element is composed of both processors and procedures.
While all interaction may be through processors (the El generic interface element processor and the MSTR
master model generator), cover procedures have been written which simplify the user interaction.

14 A Generic Interface Element for COMET-AR

June 22, 1994 1. Introduction

1.3.1. New Procedures

Several procedures which hide the actual new processor execution have been written. Macrosymbols are
used to define such things as file names and procedure names. A script file template for execution
(SS_control.com) has also been provided and may be adapted to execute most applications. The template
calls a procedure named SS_control (discussed fully in Section 3.2) that coordinates (automatically) the flow
of the analysis.

The procedures required to run an analysis with interface elements are summarized in the Table 1.1. The
experienced COMET-AR user should note the absence of familiar procedures (e.g., L_STATIC_1,
STIFFNESS). These “normal” analysis procedures have been split into functional pieces and incorporated
into the procedures listed in Table 1.1 in order to conform to the new analysis flow depicted in Figure 1.2. Of
the procedures listed in the Table, only three must be user defined: Initialize, ElI_Define, and Merge_SS. The
remaining procedures rely on macrosymbols defined by the user in the Initlalize procedure and are
transparent to the user since they are invoked automaticaily by the control procedure, SS_control. All
required user action is discussed in the Sections listed.

Table 1.1. Summary of New Procedures

Procedure Name Function Section
ControlProcedures i i ST G2 e TR R SRRERIERE I e B
SS_control Controls the analysis. No user interaction is required other than modification of 3.2
the ss_control.com template file.

Initialize Initializes required macrosymbols. Requires modification by user. 33

Post_FE_Stress Controls stress resultant recovery. 34

.El Processor Cover Procedures: v R 4

El_Define Template for interface element definitions. Requires user modification. 42

Defn_EiI_Freedoms | Defines the active dogrees of freedom for each node (specifically each 4.3
pseudo-node and alpha-node) in the interface element substructure. Called
automatically by SS_control; requires no user action.

Form_EI|_Stiffness Forms interface element stiffness matrices. Called automatically by 44
SS_control; requires no user action.

Modified Finite Element Procedures: .= = i e 8

initialize_FE Perform finite slement substructure initialization. Called automatically by 52
S$S_control; requires no user action.

Defn_FE_Freedoms | Define the active degrees of freedom for each node in the finite element 53
substructure. Called automatically by SS_control; requires no user action.

Form_FE_Force Forms consistent load vector. Called automatically by SS_control; requires no 54
user action.

Form_FE_Stitfness | Form element stifiness matrices for finite element substructures. Called 55
automatically by SS_control; requires no user action.

Comp_FE_Stress Compute finite element stress resultants. Calied through Post_FE_Stress. 5.6

Comp_Nodal_Stress | Compute smocthed nodal stress resuttants for substructures and master model. 57
Called through Post_FE_Stress.

Master Model Analysis Procedures B 6

Merge_SS Merge finite element and interface element substructures into a single master 6.2

l. May require modification by user.

Assemble_Master Perform assembly of master model system stiffness matrix and load vector. 6.3
Called automatically by SS_control; requires no user action.

Solve_Master Execute the agpropriale solver for the assembled master model. Called 6.4
automatically by SS_controt; requires no user action.

A Generic inwerface Element for COMET-AR 1-5

1. introduction June 22, 1994

1.3.2. New Processors

The software framework developed for the interface element has been used to implement a hybrid
variational interface element; this same framework may also be used by developers to implement additional
interface formulations as new interface element types. The generic interface element implementation is
based on the same philosophy used in the generic element processor (GEP) implementation of structural
elements (Ref. 1-11). Just as specific structural elements are implemented via new ES (Element-Structural)
processors, additional interface elements may be implemented via new El (Element-Interface) processors.
While the GEP served as a model, the requirements of the interface element are such that substantial effort
was invested in creating a GEP tailored for the interface elements. One of the new features is a provision for
Straction nodes,” that is, nodes for which the unknowns are tractions rather than displacements or rotations.
These traction nodes currently have no meaningtul physical location (ie., their nodal coordinates are
arbitrarily assigned) but rather, exist along the edges of finite elements connected at a given interface. Nodes
introduced along the interface (i.e., not attached to a finite element but attached only to the interface element)
which have displacement and/or rotational degrees of freedom are denoted “pseudo-nodes.” Traction nodes
are denoted “alpha-nodes.”

The El processor (depicted in Figure 1.3) has a generic software shell (which provides for uniform user
input and database interaction) and a software cover (which communicates between the shell and the
developer supplied kemnels). Each developer of new interface elements must supply the software kemels
which form the interface element stiffness matrix. All interaction with the database is accomplished for the
developer through the software shell using High level DataBase (HDB) utilities (Ref. 1-12).

PROCESSOR Eli

GENERIC INTERFACE ELEMENT PROCESSOR HDB_I D

SOFTWARE SHELL #

i megmmmmma i : A

| ‘Standard ShellKemel Interface Floutines B

Teom | Bom |[eo0 J[- | A
[sTIFFNESS| [MASS | [DEFINTTION| | -+ |

INTERFACE ELEMENT DEVELOPER'S KERNEL ROUTINES

Figure 1.3. interface Element Processor Design

The El processor permits both the automatic and user-specified definition of the interface element
pseudo-nodes. For example, the currently implemented hybrid variational interface element (processor El1)
will select automatically a proper number of pseudo-nodes or will permit the user to specify the number of
pseudo-nodes. Thus, the number of pseudo-nodes may be determined either within a developer-written
kemel or through user input but must fall within a range which ensures that the resultant global system will be

16 A Generic Interface Element for COMET-AR

June 22, 1954 1. introduction

nonsingular. Whether user-specified or developer determined, the El processor will generate the
pseudo-nodes as actual nodes in the database. If tractions exist as unknowns (as they do in the EN version
of the hybrid variational interface element), the processor will generate alpha-nodes as actual nodes in the
database. An interface element connectivity is written to the database and consists of the finite element
nodes of each connected substructure along with the node numbers of the pseudo-nodes and the
alpha-nodes. Thus, the interface element stiffness matrices may be assembled as any other element matrix
(i.e., the assembler simply uses the element connectivity).

The El processor shell calculates the geometry of the interface element so that it is independent of the
specific element formulation. This element geometry may be determined in one of three ways. The user may
define a function (currently limited to a linear function) that represents the exact geometry of the interface. In
this case, the E) shell will identify the substructure nodes lying along the function. The user may attematively
specify the nodes through which a function (piecewise linear, quadratic spline, or cubic spline) is passed. In
this case, the El shell will read the nodes, retrieve their coordinates, and construct the interface element path.
The third option for definition of the element geometry is available only for interface elements with linear
geometry. Using this option, the user may specify only the nodes at the end points of the interface. In this
case, the E! processor will intemally construct a line between the two nodes, identify the substructure finite
element nodes lying along the line, and construct the interface element.

A second processor which merges the substructures into a single, master finite element model is also
provided. The Master Model Processor, MSTR, renumbers all of the input nodes (including pseudo-nodes
and alpha-nodes) sequentially, renumbers the elements, rewrites the element connectivities, and copies all
the data required for the solution into a single library file. The resulting master model then contains both finite
elements (possibly several different types) and intertace elements. The element stiffness matrices may then
be assembled using the available assembly processor (e.g., processor ASM) and the resulting global system
of equations may be solved using a conventional solver (e.g., processor PVSNP).

A Generic Intertace Element for COMET-AR 1-7

1. introduction

June 22, 1994

1.4. Organization

The files required to run an analysis using interface elements have been consolidated into a directory
structure which all users and developers may access (to read). This directory structure is outlined in Table
1.2. The environment variable $AR_ROOT, as well as the environment variables listed in the Table, will be set
up automatically upon initialization of the COMET-AR system (see Section 2.2).

Table 1.2. Directory Structure for Interface Elements

Environment

Directory Variable Function
SAR_ROOT/el $AR_EI Top level interface element directory
$AR_ROOT/el/mods $SAR_EIMODS | Top level for software developers
$AR_ROOT/ei/mods/inc SAR_EIINC | Include files for El and MSTR processors
Source and object files for the El shell. includes a
$AR_ROOT/e/mods/el SAR_EISRC | \ompiate for Ekcover.ams and a makefile.
Source, object, and executable files for processor Ef1.
$SAR_ROOT/ei/mods/el/el1 $AR_EN Includes source and object for EI1_cover.ams and a
makefile.
SAR_ROOT/eymods/mstr SAR_MSTR Source, orbjed. and executable files for the MSTR
$AR_ROOT/ei/in $SAR_EIBIN | Executables for El1 and MSTR.
Top level for users. Contains the prociib.gal procedure
$AR_ROOT/eljprc $AR_EIPRC | library and templates for user written procedures and
scripts.
$SAR_ROOT/el/pre/control None Control procedures
$SAR_ROOT/el/pre/utiiity None WUtility procedures
$SAR_ROOT/el/demo $AR_EIDEMO | Demonstration and analysis example files
SAR_ROOT/el/applications None Applications procedure files

Atemplate file for execution of an analysis, called 8s_control.com, is located in SAR_ROOT/eifpre/. An
explanation of this file appears in Chapter 2.

1-8

A Generic inmerface Element for COMET-AR

June 22, 1994 1. Introduction

1.5. Limitations, Implicit Assumptions, Conventions

There are currently limitations on the range of application of the interface element. Certain assumptions
have been made which place additional limitations on the interface element's use. In the future, as the
implementation is broadened to include additional functionality, many of these may be addressed.

1.5.1. Limitations

= Allinterface elements must be in a single library and only interface elements are assumed to be in that

library. As long as all interface elements are defined in a single execution of the El processor, this will

remain so. Note that this means that the current implementation will not permit the mixing of interface

element processors or types.

Only Finite Element and Interface Element substructures are explicitly provided for at present. While the

user input has hooks for Rayleigh-Ritz and Boundary Element Substructures, these types of

substructures do not currently exist in COMET-AR.

* interface elements may only be applied in linear static applications.

= Each finite element along the interface is of uniform order on each element edge (i.e., finite elements
must have the same number of nodes on each element edge or must be implemented so that they
appear to be this way).

= For each substructure, all finite elements along the interface are of the same order. The order of the finite
elements need not be the same for each attached substructure.

= Stresses or stress resultants cannot currently be computed on the Master Model. The displacement
solution must be spiit out for each substructure (using the MSTR processor) and stresses caiculated at
the substructure level. However, utilities exist which allow the user to combine substructure stresses into
master model stresses.

= The choices for the geometry and displacement interpolation functions are limited to: a piecewise linear
function, quadratic spline, or cubic spiine. The geometry and displacement interpolation functions may be
different functions (e.g., piecewise linear geometry and cubic spline displacement).

= Only 8 data libraries may be open at one time within the COMET-AR system. Therefore, there can be no
more than 5 active substructure libraries. This restriction assumes that one library is used for the
interface elements, one for the master model, and one for the procedure library, thereby leaving 5
libraries for use by the substructures.

1.5.2. Implicit Assumptions

* The user must understand how to use COMET-AR to perform an analysis.
» Each interface element processor contains only one interface element type.
» Interface elements may intersect each other only at end points.

1.5.3. Conventions

= Each substructure is assigned a unique identification number which remains with the substructure
throughout the analysis (i.e., substructure 1 remains substructure 1 from start to finish).

= Pseudo-node numbering begins at 1 in the interface element substructure. This happens automatically
provided all interface elements are defined in one execution of the interface element processor.

= For each interface element, displacement nodes (i.e., pseudo-nodes) are numbered first, traction nodes
{i.e., alpha-nodes) are numbered second.

* The Master model orders all of the finite element nodes first, ali pseudo-nodes second, and all of the
alpha-nodes last.

* Pseudo-nodes are evenly spaced along a given interface element.

A Generic interface Element for COMET-AR 1-9

1. Introduction June 22, 1994

1.6. Reference Frames

COMET-AR permits the use of several different reference frames: computational (the frame attached to
each node in which the solution is obtained) denoted by the subscript “c,” element (the frame attached to
each finite element) denoted by the subscript “e,” global (the frame in which the nodal coordinates are
defined) denoted by the subscript “g,” and material or stress (the frame that defines the principal material
direction) denoted by the subscript “m.” The interface element introduces two additional reference frames.
The edge frame defines the finite element edge along the interface (the computational frame for the
alpha-nodes) and is denoted by the subscript “d.” The interface frame defines the interface path (the
computational frame for the pseudo-nodes) and is denoted by the subscript *s.” Figure 1.4 depicts these
various reterence frames. Finite element nodes are denoted by filied circles: pseudo-nodes are denoted by
filled squares.

Finite element Nodes

S :
m: material frame

Yg c: nodal computational frame
zg o: finite element frame
g: global frame
§. pseudo-node computational frame
Xg d: alpha-node compittational frame

Figure 1.4. Interface Element Reference Frames

1-10 A Generic inerface Element for COMET-AR

June 22, 1994 1. introduction

1.7. References

1-1

1-2
1-3

1-4

Stanley, G.M., Huribut, B., Levit, |, Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's Manual,
LMSC Report #P032583, 1993. .

Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice Hall, New Jersey, 1982.

Choi, CK., and Park, Y.M., “Transition Plate Bending Elements with Variable Nodes,” Numerical
Techniques for Engineering Analysis and Design - Proceedings of the intemational Conference on
Numerical Methods in Engineering: Theory and Applications, NUMETA ‘87, edited by G.N. Pande and J.
Middieton, Martinus Nijhoff Publishers, Boston, 1987, pp. D31/1-D31/8.

Subbaraj, K. and Dokainish, M.A., “Side-Node Transition Quadrilateral Finite Element for Mesh-Grading,”
Computers and Structures, Vol. 30, No. 5, 1988, pp. 1175-1183.

McDill, J. M., Goldak, J. A. Oddy, A. S., and Bibby, M. J., “Isoparametric Quadrilaterals and Hexahedrons
for Mesh-Grading Algorithms,” Communication in Applied Numerical Methods, Vol. 3, 1987, pp.155-163.

Maday, Y., Mawriplis, D., and Patera, A., “Nonconforming Mortar Element Methods: Appilication to
Spectral Discretizations,” NASA CR-181729, ICASE Report No. 88-59, October 1988.

Shaeffer, H.G., MSC/NASTRAN Primer, Static and Normal Modes Analysis, Shaeffer Analysis, Inc., Mont
Vermnon, New Hampshire, 1979, pp. 262-265.

Aminpour, M. A, Ransom, J. B., and McCleary, S. L., “Coupled Analysis of Independently Modeled Finite
Element Subdomains,” AIAA Paper Number 92-2235, 1992.

Aminpour, M.A., McCleary, S.L., and Ransom, J.B., “A Global/Local Analysis Method for Treating Details
in Structural Design,” Proceedings of the Third NASA Advanced Composites Technology Conference,
compiled by J.G. Davis, Jr. and H.L. Bohon, NASA CP-3178, Vol. 1, Part 2, 1992, pp. 967-986.

1-10 Ransom, J. B., McCleary, S. L., and Aminpour, M. A., "A New Interface Element for Connecting

independently Modeled Substructures,” AIAA Paper Number 93-1503, 1993.

1-11 Stanley, G. M. and Nour-Omid, S., The Computational Structural Mechanics Testbed Generic

Structural-Element Processor Manual, NASA Contractor Report 181728, March 1990.

1-12 Stanley, G. M. and Swenson, L., HDB Object-Oriented Database Utilities for COMET-AR, NASA CSM

Contract Repont, August, 1992.

A Generic inwertace Element for COMET-AR 1-1t

June 22, 1984

THIS PAGE INTENTIONALLY BLANK

A Generic Interface Element for COMET-AR

is Example

Part I.
ANALYSIS EXAMPLE

A Generic interface Element for COMET-AR

PRECEDING PAGE BLANK NOT FILMED

Il. Analysis Example June 22, 1994

THIS PAGE INTENTIONALLY BLANK

-2 A Generic Imerface Element for COMET-AR

June 22, 1984 2. A Simple Analysis Example

2. A Simple Analysis Example

2.1. Overview

This Chapter contains a simple example of an analysis using a single interface element. it is assumed
that the user is familiar with COMET-AR. The example application is a cantilever beam with a variable end
load. User-written procedures and a script for executing the analysis are provided. The Chapter contains the

following sections:
Table 2.1. Outline of Chapter 2: A Simpie Analysis Example
Section Toplc Function
) Explains the use of the new software for a
2 Application: Cantilever Beam simple, single interface analysis

Section 2 contains exampie model generation and analysis procedures. Each procedure is accompanied
by an explanation of the required user action. Ihis Chapter Is not a tutorfal in the sense that it does not
provide step-by-step instructions on how to use COMET-AR. Rather, the user is assumed to have knowiedge
of COMET-AR, its procedures and how to read them, and how to perform an analysis. The Chapter focuses
on providing the user with the procedures required for an example application, highlighting the additional
requirements of the interface element.

The COMET-AR initialization procedure has been updated to reflect the interface element software. New
environment variables have been inciuded and are automatically defined when the COMET-AR Jogin file is
executed. Running an analysis using interface elements requires several steps which may be summarized as
follows:

1. Create a new directory for the new application.
2. Copy the files:
= $AR_EIPRC/SS_control.com
s $AR_EIPRC/el_define.clp
s $AR_EIPRC/merge_ss.cip
= $AR_EIPRC/initialize.cip
into the new application directory.
3. Create model! definition files for the given application. Note that models may be created through
PATRAN (or some other model! generation software) or through command language procedures.
4. Modify the procedure files:
= o/_define.clp
s merge_ss.clp
s [nitialize.cip
to reflect the current application.

5. Modify the SS_control.com script file to reflect the current application.
6. Run the analysis.
7. Post-process the results as required.

Steps 1 through 6 are described in the following Sections. Where appropriate, user actions are high-

lighted and summarized at the bottom of each page. Post-processing may occur at either the substructure or
the master model leve! and may be performed with the usual post-processing facilities (e . g,.PATRAN).

A Generic Inverface Element for COMET-AR 2-1

PRECEDING PAGE BLANK NOT Filiicl

2. A Simple Analysis Example June 22, 1984

THIS PAGE INTENTIONALLY BLANK

2-2 A Generic interface Element for COMET-AR

June 22, 1994 2. A Simple Analysis Example
2.2. Application: End-Loaded Cantilever Beam

2.2.1. General Description

The application described in Figure 2.1 is a simple exampie of an analysis using a single interface
element. The cantilever beam may be loaded in tension, in-plane or out-of-plane shear, or bending at the
beam tip.

L .
h E = 100000.
interface Element v =0.0
10 11 12' g / 10 11 12 £=-02
12, = 1.
/7 8 94‘/ T L = 10.
y 45 6 7 8l
y i 6; h
i Y AR 2 I3 4Y <~
Syt | S Loaded End
Substructure 1 Substructure 2

Figure 2.1. Cantilever Beam with Various End Loads

While not required, the user should begin by creating a new directory within which the analysis will take
place. By keeping each analysis in a separate directory, there is less chance for confusion since procedure
files will have to be added for each different application. For this example, a directory named beam could be
created and the files:

= $AR_EIPRC/SS_control.com

* $SAR_EIPRC/el_define.clp

= $AR_EIPRC/merge_ss.clp

= $AR_EIPRC/initialize.clp
copied into this directory. Note that the environment variabie $AR_EIPRC is defined during the COMET-AR
initialization (i . e execution of the cometar.login file). Once all the necessary files are in place, the user must
create the model definition procedures.t

v INITIALIZATION USER ACTION
« Ensure proper COMET-AR initialization
« Create an application directory named beam

« Copy the files:$SAR_EIPRC/SS_control.com
$AR_EIPRC/el_define.cip
$SAR_EIPRC/merge_ss.clp
$AR_EIPRC/initialize.clp

to the beam directory.

« Proceed to the model definition (next Section)

+ Note that the purpose of this Chapter is to assist the user in running an analysis with interface elements; it is not to
teach a new user how to perform an analysis with COMET-AR. Those unfamiliar with COMET-AR should
consuilt the COMET-AR User’'s Manual and Tutorial documents as needed.

A Generic Inwriace Element for COMET-AR 23

PRECEDING PAGE BLANK NOT FIL:

2. A Simple Analysis Example June 22, 1994
2.2.2. Model Definitions

The model definition procedures must fully define each of the substructures. Full substructure definition
includes the definition of: nodal coordinates, element connectivity, boundary conditions, applied loading, and
material and section properties. The configuration of the application shown in Figure 2.1 lends itself to the use
of a generic rectangular grid generation procedure for the definition of the models of both finite element
substructures. This generic procedure along with procedures for defining the substructures identified as
Substructure 1 and Substructure 2 in Figure 2.1 are provided in the following Sections.

The model definitions are initiated by first copying the file $AR_EIDEMO/beam/beam_utli.pre to the cur-
rent working directory. This file contains the generic model generation procedure and its subordinate proce-
dures. Each specific model generation procedure (for each of Substructures 1 and 2) will call the top level
generic procedure contained in this file and named BEAM_MODEL. The model generation procedures use
several user-defined macrosymbols. These macrosymbols are accessed by copying the procedure file
SAR_EIDEMO/beam/macros.clp into the current working directory.

- . MODEL DEFINTION USERACTION .. .
» Copy $AR_EIDEMO/beam/beam_util.prc to the application directory (beam).
« Copy SAR_EIDEMO/beanvmacros.cip to the application directory (beam).
« Define user macrosymbols, if any, in a procedure file as in Section 2.2.2.2.
« Create a procedure to define Substructure 1 as in Section 2.2.2.3.
« Create a procedure to define Substructure 2 as in Section 2.2.2.4.
« Proceed to the definition of the required macrosymbols as in Section 2.2.3.

24 A Generic Imertace Element for COMET-AR

June 22, 1994 2. A Simple Analysis Example

2.22.1 Generic Rectangular Mesh Generation Procedure

The generic modeling procedure BEAM_MODEL creates a regular, rectangular finite element model
which may be loaded and/or constrained on any edge. It is fully parameterized and uses various arguments
to determine the dimensions and location of the rectangular region, along with the specification of loading and
boundary conditions. Within the file SAR_EIDEMO/beam/beam_util.pre, is a set of utility procedures which
may be used repeatedly for the model definitions of any combination of regular, rectangular regions in the x-y
plane (minor modifications are required for regions which have a nonzero or varying z coordinate}. Once this
file has been added to the current procedure library, the user need only call BEAM_MODEL with the proper
arguments; the subordinate procedures will be called automatically but will remain invisible to the user. A list-
ing of the BEAM_MODEL procedure follows:

*procedure BEAM_MODEL (es_proc ;es_type; -- . ES processor name and element type
es_nen ; -- . Number of nodes for this element type
nelx ; nely ; =-- . Number of elements in x and y directions
load_dir ; -- . Direction of applied load (if any)
consedge ; cons ; =-- . Edge # of constr. edge and const. dofs
loadedge ; load ; =-- . Edge #% of loaded edge and load values
x0 ; yO ; -- . Coordinates of first node in region
Lx ; Ly -- . Length in x and y of the region
E ; PR ; THICK) . Young’s mod., Poisson’s ratio, thickness

‘remrk AR AARRRE TR N

*remark Defining Beam Model
Rremark TN C N RN TR AR T RREIRNESY

%
Q
[
—
—
[=]
[&]
I"'l
3
o
m
0n
t

n
—~
i
v
ol

]
()
=
2
(2]
=

1
i
0
o

*call DEF_ELTS { es_proc=[es_proc]; es_type=[es_type]l; es_nen ={es_nen})

*call DEF_LBC (consedge = {[consedge] ; cons = [cons]) ; ==

loadedge = [loadedge] ; load = [load] ; --

nelx = [nelx] ; nely = [nely) ; -

es_proc = [es_procl ; es_type = [es_type] ; load_dir = [load_dir])
*end

A Generic interface Element for COMET-AR 25

2. A Simpie Analysis Example

June 22, 1994

2.2.2.2 Model Definition Macrosymbols

The model definition for this example is facilitated through the use of a number of macrosymbols
contained, in this case, in a separate procedure which resides in the file $AR_EIDEMO/beam/macros.cip.
This procedure contains macrosymbol definitions which are used in subsequent calls to the model definition
procedures for the two substructures. By defining these macrosymbols either within a procedure or within the
script file, the models may be modified while the model definition procedures remain unaltered. A listing of the

macrosymbol definition procedure follows:

*procedure MODEL_PARAMS

. Define model parameters using macrosymbol arrays. The # of items in each array is
substructures (one item in each array for each substructure)

. determined by the # of
*def/i num_models
*def/i nelx
*def/i nely
*def/e x0
*def/e y0
*def/e Lx
*def/e Ly
*def/i consedge
*def/a cons
sdef/i loadedge
sdef/e load
*def/e load_dir
*def/a ES_PROC
*def/a ES_TYPE
*def/i es_nen

%end

1
[

2

2,3

3,2
0.0,1.0
0.0,0.0
1.0,4.0
1.0,1.0
4,0
‘fixed', ‘none’
0,2
0.0,1.0
0,1

ESl
Ex47

4

. # of substructures (SS)

. # of elements in x direction for each SS

. # of elements in y direction for each SS

. x-coordinate of the first node for each SS

y-coordinate of the first node for each SS

. x-dimension for each SS

. y-dimension for each SS

. Edge # of constrained edge for each SS

. Constraints for each SS (all nodes on edge)

. Edge # of loaded edge for each SS

. Loading for each SS (applies to <loadedge(il>)
. Direction of applied loading (0 => no load)

. ES processour name

. ES element type name

. # of nodes per element of <es_type>

26

A Generic imertace Element for COMET-AR

June 22, 1994 2. A Simple Analysis Example

2.2.2.3 Substructure 1 Model Definition

With the generic modeling procedure and its subordinate procedures and the macrosymbol definitions in
place, it remains to define procedures for each of the substructures. The following procedure, located in a file
named $AR_EIDEMO/beanvmodel1.clp, is an exampie of a procedure which will fully define the modet for
Substructure 1 provided the generic model and macrosymbol definition files previously discussed are used.

*procedure Modell_Def
. Call the generic model procedure using the macrosymbols which define substructure 1
%call BEAM_MODEL (es_proc = <es_proc> -- . ES processor name
es_type = <es_type> -- . ES element type
es_nen = <es_nen> -- . # of nodes for this ES type
nelx = <nelx[1l]}> -- . # of elements in x direction
nely = <nelx([1l]> -- . # of elements in y direction
consedge = <consedge[l)> -- . Edge # of constrained edge
cons = <cons[1l]> -- . Constrained dofs
loadedge = <loadedge[l}> -- . Edge # of loaded edge
load = <load[l}> -- . Load values
load_dir = <load_dir{l])> -- . Load direction
x0 = <x0([1]> -- . x coordinate of first node
y0 = <y0{1]> -- . y coordinate of first node
Lx = <lx[1l]> ~-- . Length in x
Ly = <Ly[l]> -~ . Length in y
E = 1.0E5 -- . Young’s modulus
PR = 0.0 -- . Poisson’s ratio
THICK = 0.01) . thickness
*end

2.2.2.4 Substructure 2 Model Definition

The procedure defining Substructure 2 is nearty identical to the procedure of the previous section (which
defined Substructure 1). The only differences between the two are in the procedure name (which reflects the
substructure number) and in the macrosymbols used (the second item in the list is now used rather than the
first). The following procedure, located in a file named $AR_EIDEMO/beam/model2.clp, is an example of a
procedure which will fully define the model for Substructure 2 provided the generic procedure and
macrosymbol definition files previously discussed are used.

*procedure Model2_Def
. Call the generic model procedure using the macrosymbols which define substructure 2
*call BEAM_MODEL (es_proc = <es_proc> -- . ES processor name
es_type = <es_type> -- . ES element type
es_nen = <es_nen> -- . # of nodes for this ES type
nelx = <nelx([2]> -~ . ¥ of elements in x direction
nely = <nelx([2}> ~-— . # of elements in y direction
consedge = <consedge[2]> -- . Edge # of constrained edge
cons = <cons(2]> -- . Constrained dofs
loadedge = <loadedge[2]> -- . Edge # of loaded edge
load = <load[2]> -- . Load values
load_dir = <load_dir([2]> -- . load direction
x0 = <x0[2]> -- . x coordinate of first node
yO0 = «<y0[2]> -- . y coordinate of first node
Lx = <Lx{[2]> -- . Length in x
Ly = <Lyl[2]}> -- . Length in y
E = 1.0E5 -- . Young’'s modulus
PR = 0.0 -- . Poisson’s ratio
THICK = 0.01) . thickness
*end

A Generic Intertace Element for COMET-AR 2-7

2. A Simple Analysis Example June 22, 1984

2.2.3. Definition of Required Macrosymbols

Prior to defining the interface elements, a customized version of the file /nitiallze.clp (which has already
been copied into the working directory) should be created. This file contains a procedure which defines the
global macrosymbols used by various utility procedures. While these macrosymbols do not have to be
defined through this procedure, they must be defined prior to calling the control procedure, SS_control. It is
highly recommended that the user adjust the template file rather than attempt to incorporate the definitions
into other procedures or files elsewhere.

The following exampie of the Initialize procedure has been customized for this beam application. The
new user should note that each substructure is saved in its own database which has been assigned a unique
logical device index (idi) or library number. Furthermore, the interface element and master mode! database
file names and Iidis are also unique. While the substructure models may be combined into a single database
file, this is not recommended due to the absence of node and element label capabilities. The interface ele-
ment and master model files and logical device indices must always be unique. That is, the interface ele-
ments must aways be kept in a separate library (they are created in a new library).

*procedure Initialize

*def/i Num_SS == 2 . % of 88

*def/i SS_List[1:<Num_SS>) == 1,2 . Id’'s for ss

*def/a SS_Lib_Name([1] == MODEL<SS_List(1)}>.DBC . Library file name SS1

*def/a SS_Lib_Name (2] == MODEL<SS_List([2)>.DBC . Library file name SS2

*def/a SS_Define_Prc(l] == MODEL1_DEF . Model definition procedure SS1
*def/a SS_Define_Prc(2] == MODEL2_DEF . Model definition procedure SS1
*def/i SS_1di[l:<Num_SS>) == 1,2 . 1di for SSl and S$S2

®def/i SS_step(l:<Num_SS>] == 0,0 . load step # for SS1 and SS2
®*def/i SS_load_set [1l:<Num_S§S>] = 1,1 . load set # for SS1 and SS2
*def/i SS_con_set [1:<Num_SS>] = 1,1 . constr. set # for SS1 and SS2
*def/i SS_mesh[1l:<Num_SS>} == 0,0 . mesh id # for SS1 and $S82
*def/a EI_Proc = EIl1 . IE processor name

*def/a EI_Lib_Name == ‘interface.dbc’ . IE library file name

*def/a EI_Define_Prc == ‘EI_Define' . IE definition procedure
*def/i EI_1di == 4 . IE logical device index
*def/i EI_step == 0 . Load step # for IE’s

*def/i EI_Load_set == 1 . Load set # for IE’s

*def/i EI_Con_set == 1 . Constraint set # of IE's
*def/i EI_mesh == 0 . Mesh # for IE’s

*def/a MM_Name == ‘master.model’ . Master model (MM) library file
*def/a Merge_SS_Prc == ‘Merge_SS' . MM generation procedure
*def/i MM_1di == 3 . MM logical device index#
$def/i MM_step == 0 . MM step #

*def/i MM_Load_set == 1 . MM load set #

*def/i MM_Con_set == 1 . MM constraint set #

*def/i MM_mesh == 0 . MM mesh number

*def/i auto_dof_sup == <true> . Auto dof suppression flag
®def/i auto_drill == <false> . Artificial drill stiffness flag
*def/i auto_triad == <false> . Auto nodal normal triads flag
*def/a Post_Prc == 'Post_Test . Post-processing procedure

*end

‘REQUIRED MACROSYMBOL DEFINITION USER ACTION

« Modify the initialize.cip file to reflect the current application

28

A Generic Intertace Element for COMET-AR

June 22, 1854 2. A Simple Analysis Example

2.2.4. Interface Element Definition

Once the substructure models have been generated, the user should proceed to the definition of the
interface element(s). The file e/_define.clp (which was copied earlier into the current working directory)
should be modified to reflect the current application. The following procedure is a version of this file which has
been customized for the beam application. Note that the interface element is defined by specifying substruc-
tures 1 and 2 and various parameters associated with the substructures. Referring to Figure 2.1, the user
may verify that the nodes along the intertace for finite element substructure 1 are nodes 3, 6, 9, and 12 and
for finite element substructure 2 are nodes 1, 5, and 9 as shown in the input list. This model does not require
that constraints be applied to the interface (either pseudo-nodes or alpha-nodes) as there are only two sub-
structures and they are coplanar. The drilling degree of freedom will therefore be suppressed automatically. A
detailed discussion of user input to the El processor may be found in Chapter 7.

sprocedure EI_Define
. Define Interface Elements

run EI1l

. Processor Resets
reset 1ldi <EI_1l1di>
reset mesh <EI_mesh>
reset step <EI_step>

<EI_load_set>
<EI_con_set>

reset load_set
reset cons_set
. Element Definitions
DEFINE ELEMENTS
ELEMENT 1
Ss 1 /LDI=1 /FE /CONS=1
NODES = 3:12:3
Ss 2 /LDI=2 /FE /CONS=1
NODES = 1:9:4
END_DEFINE

send

- INTERFACE ELEMENT DEFINITION USER ACTION -
« Edit the file ¢/_define.cip to reflect the current application

A Generic Imerface Element for COMET-AR 29

2. A Simple Analysis Example June 22, 1994
2.2.5. Merging the Substructures into a Master Model

The introduction of the interface element into the analysis creates new requirements on both the analysis
and the user. One of these requirements is the creation of a master model. With each substructure in a poten-
tially ditferent database file and the interface elements in yet another database file, a merge operation must
be performed in order to take advantage of the current COMET-AR assembiers and solvers.

This merge operation combines specified substructures and the interface elements into a single master
model. There is a utility procedure called Merge_SS (within the file merge_ss.cip) which performs this
merge for all of the substructures identified as active in the initialize. clp file. if a selective merge is desired
(i.e only some of these substructures are to be merged for a given analysis) the Merge_SS procedure
should be mdlﬁedtoreﬂecttheselectedsubsttuctures 1 all of the defined substructures are to be merged.

adure. The following is a version of the procedure Merge_SS

whlch is descrbed in detall in Sechon 6. 2 and whuch may be used unaltered for this application.

*procedure Merge_SS
. Merge User-specified substructures into a single library
Run MSTR
. Define Substructures that will be merged
DEFINE SUBSTRUCTURES
*do $j = 1, <Num_SS>
. Finite Element Substructures
SUBstructure <SS_List[<$3i>)> /fe

Library = <SS_1di[<$j>]> . 8S library numbers

Mesh = <SS_mesh([<$ji>])> . S8S mesh numbers

Load_set = <SS_load_set [<$j>]> . SS load set numbers

Constraint_case = <SS_con_set[<$j>]> . 8S constraint case numbers

Load_step = <SS_step[<$i>]> . 8S load step numbers
*enddo

. Interface Element Substructure
SUBstructure <<SS_List{[<$j>]>+1> /ie

Library = <EI_ldi> . Interface Element library

Mesh = <EI_mesh> . Interface Element mesh

Load_set = <EI_load_set> . Interface Element load set

Constraint_case = <EI_con_set> . Interface Element constraint case

Load_step = <EI_step> . Interface Element load step
END_DEFINE

. Perform the Merge operation
MERGE <SS_List[1:<Num_85>]>,<<Num_S$S>+1>

File = <MM_name> . Master model library file name
Library = <MM_ldi> . Master model 1di number
Mesh = <MM_mesh> . Master model mesh
Load_set = <MM_load_set> . Master model .load set
Constraint_case = <MM_con_set> . Master model constraint case
Load_step = <MM_step> . Master model load step
END_MERGE
STOP
*end

_ +“MERGING SUBSTRUCTURES USERACTION - - ,
« Edit (as needed) the file merge_ss.cip to reflect the curent applucatson

2-10 A Generic inwertace Element for COMET-AR

June 22, 1884 2.ASﬁnNoAmnbmh;Ennaﬂo

2.2.6. Running the Analysis

At this point, the models for the substructures, the interface elements, and the master mode! will have
been defined, and it remains only to prepare a script and to run the analysis. If procedure files have been
used for the model definitions and the macrosymbol definitions (both user desired and required), the script file
may look much like the following file. A script file template has been provided in $AR_EIPRC and is called
SS_control.com. As its name implies, this file is a template which contains the commands necessary to con-
trol the analysis. The user will have already copied this script file into the current working directory and should
modify it as needed for this application. The following is a version of the script SS_control.com which has
been modified for the current application. Typical user modifications may include changing file names, chang-
ing procedure names, and setting arguments to limit the scope of the execution. The reader should note the
order of the calls to procedures. All macrosymbol definition procedures must be called prior to calling the pro-
cedure named SS_control (see Section 3.2 for a compiete discussion). This control procedure decides what
to do and how to do it based on the macrosymbols defined in the Initiaiize procedure and the arguments
passed through the call. The arguments are all logical { . ¢ gither <true> or<false>) and turn on true>)
or off (<false>) the named functions. For example, if the argument DEFINE_SS is set to<true>, then all
substructures indicated by the SS * macrosymbols will be defined. If DEFINE_SS is set tocfalse>, then the
control procedure will assume that the substructure definitions have already been completed and that data
libraries exist which fully define the substructures.

rm proclib.gal DBRdebug.dat
cp $AR_EIPRC/proclib.gal .
cometar << \endinput
*set echo off
ADD proper files; set up the procedure library
*get plib = 28
*open 28 proclib.gal /old

*add macros.clp . User macros

*add modell.clp . Model 1

*add model2.clp . Model 2

*add initialize.clp . Required macros

*add beammodel.clp . Generic model definition
*add ei_define.clp . Interface element def’n.
*add merge_ss.clp . Master model merge

. Define Macrosymbols needed for model generation

*call MODEL_PARAM

. Define Macrosymbols required by the interface element procedures
*call Initialize

*call SS_control (Define_SS = <true» ; -- . Define substructures?
Define_EI = <true> ; -- . Define Interface elements?
Merge_SS = <true» ; -- . Merge substructures?
Assemble = <true> ; -- . Assemble master model?
Solve = <true> ; -- . Solve master model system?
Post_Process = <false>) . Post process?

Run Exit

\endinput

 “RUNNING AN ANALYSIS USER ACTION -
« Edit the file SS_control.com to reflect the current application
« Run the script
« Post-process the results as desired

A Generic interface Element for COMET-AR 2-11

2. A Simple Analysis Example June 22, 1994

THIS PAGE INTENTIONALLY BLANK

2-12 A Generic Interface Element for COMET-AR

June 22, 1994 ill. Procedures

Part Ill.
PROCEDURES

A Generic intorface Element for COMET-AR -t
PRECEDING PAGE BLANK NOT FILMED

lil. Procedures June 22, 1994

THIS PAGE INTENTIONALLY BLANK

-2 A Generic Intertace Element for COMET-AR

June 22, 1994 3. New Control Procedures

3. New Control Procedures

3.1. Overview

This Chapter describes new COMET-AR command language procedures for controlling an analysis
which employs interface elements. A Section is dedicated to each of the procedures listed in Table 3.1.

Tabie 3.1. Outiine of Chapter 3: New Control Procedures

Section Procedure Function
2 SS_control Controls linear static analysis using interface elements
3 Initialize Initializes required macrosymbols
4 Post_FE_Stress | Controls stress recovery for substructures

Currently there is only one control procedure for analyses which employ interface elements, named
SS_control, and it is limited to linear static analysis. This procedure invokes various additional procedures,
some of which must be written by the user. Subordinate procedures are described in subsequent Chapters;
examples of user-written procedures are provided as well. The procedure Initlalize is considered a control
procedure in that it defines the macrosymbols which are used to contro! the analysis. The procedure

Post_FE_Stress controls the stress recovery operation and calls both master model and finite element pro-
cedures.

A Generic inwerface Element for COMET-AR 31

PRECEDING PAGE BLANK NOT FILMED

3. New Control Procedures June 22, 1984

THIS PAGE INTENTIONALLY BLANK

32 A Generic Interface Element for COMET-AR

June 22, 1994 3. New Control Procedures

3.2. Analysis Control - Procedure SS_control

3.2.1. General Description

The procedure named SS_control which controls the analysis flow was introduced in Section 2.2.6. For
most users and applications, only a call to the control procedure, SS_control is needed to perform an
analysis. Procedure SS_control performs a sequence of calls to other procedures as shown in the Figure
3.1. In the Figure, ISS refers to the current substructure and nSS refers to the total number of substructures.
Only those boxes marked with shaded ends are user-written {or user-modified) procedures; all others are
utilities which will be executed automatically.

==
¥

Model Procedure :

|

!

I

|

!

|

|

|

I ¥
|
I

| C Prpeodun

: initialize_FE) <
I

|

|

I

|

|

I

|

I

I

L

Procedure
Form_El_Stifiness

C Procedure

I
|
I
I
I
I
I
|
I
(Doln FE | Freedoms | *C“"'s"“
| - Procedu
|
|
I
I
!
I
I

Procedure
Assembie_Master
C Form_FE_| Foreo Procsdure
' Solve_Master
Executed to Define Finite Element Substructures
————————————— < Post-Processing
: Procedure .

8 (e

Figure 3.1. Schematic of SS_control: Analysis Control Procedure

A Generic Inweriace Element for COMET-AR 33

PRECEDING PAGE BLANK NOT FILMED

3. New Control Procedures June 22, 1954

3.2.2. Argument Summary

Procedure SS_control may be invoked with the COMET-AR +call directive, employing the arguments
summarized in Table 3.2, which are described in detail subsequently.

Table 3.2. Procedure SS_control Input Arguments (Logical order)

Argument Default Value Description
DEFINE_SS <false> Define substructures flag
DEFINE_EI <false> Define interface elements flag
MERGE_SS <false> Merge substructure flag
ASSEMBLE <false> Assemble master system of equations flag
SOLVE <false> Solve master system of equations flag
POST_PROCESS <false> Post-processing flag

3.2.3. Argument Definitions
In this subsection, the procedure arguments summarized in Table 3.2 are defined in detail. Note that
arguments are listed in logical order (i.e., the order of the analysis) rather than alphabetical order.

3.2.3.1 DEFINE_SS Argument
Define Substructures Flag. This flag tumns on or off the model definition for all substructures.
Argument syntax:

DEFINE_SS = define_SS_flag

where define_SS_flag may be set to either <t rue> (if substructure model definition procedures are to be
executed) or <false> (if existing libraries are to be used for the substructure model definitions). When this
flag is set to <t rue>, procedures (named by the macrosymbol SS_Define_Pre{1nSS]) which define the
substructures must be provided by the user. (Default vaiue: <false>)

3.2.3.2 DEFINE_EI Argument
Define Interface Elements Flag. This flag turns on or off the definition of all interface elements.
Argument syntax:

DEFINE_E! = define_E|_fiag

where define_E|_flag may be set to either <true> (if interface element definition procedures are to be
executed) or <false> (if an existing library is to be used for the interface element definitions). When this flag
is set to <true>, a procedure (named by the macrosymbol E|_Define_Prc) which defines the interface
elements must be provided by the user. (Default value: <false>)

34 A Generic Intertace Element for COMET-AR

June 22, 1964 3. New Control Procedures

3.2.3.3 MERGE_SS Argument

Merge Substructures Flag. This flag tums on or offthe merging of selected substructures and interface
elements into a single, master mode!.

Argument syntax:

MERGE_SS = merge_SS_flag

where merge_SS_flag may be set to either<t rue> (if the merge procedure is to be executed) or <false> (if
an existing library is to be used for the merged master model). When this flag is set tactrue>, a procedure
(named by the macrosymbol Merge_SS_Prc) which merges the substructures into a single master model must
be provided by the user. (Detault value: <falses)

3.2.3.4 ASSEMBLE Argument

Assemble Global System Matrix and Vector Flag. This flag tums off or on assembly of the system
stiffness matrix and applied force vector.

Argument syntax:

ASSEMBLE = assemble_flag

where assemble_flag may be set to either <true> (if an existing assembly utility procedure is to be
executed) or <false> (if an existing library contains the assembled stifiness matrix and load vector). This
flag will trigger the execution of an existing utility procedure; no additional user action is required. (Default
value: <false>)

3.2.3.5 SOLVE Argument

Solve Global System of Equations Flag. This flag turns off or on the sokstion of the global system of equa-
tions which has been reduced in size by the number of constraints applied to the system during assembly.
Once a solution for the reduced system has been obtained, the solution vector is expanded to include the
constrained degrees of freedom.

Argument syntax:

SOLVE = solve_fiag

where solve_flag may be set to either<true> (if the existing solution utility procedure is to be executed) or
<false> (it an existing solution vector is to be used). This flag will trigger the execution of an existing utility
procedure; no additional user action is required. (Default value: <false>)

3.2.3.6 POST_PROCESS Argument

Post-processing Flag. This flag tums off or on the post-processing of selected substructures and/or the
master model.

Argument syntax:

POST_PROCESS = post_process_fiag

where post_process_flag may be set to either<t rue> (if the post-processing procedure is to be executed) or
<false> (if no post-processing is desired during the current execution). When this flag is set to <true>, a
procedure (named by the macrosymbol Post_Prc) which provides the post-processing commands must be
provided by the user. (Default value: <false>)

A Generic Interface Element for COMET-AR 35

3. New Control Procedures June 22, 1994

3.2.4. Database Input/Output Summary

Procedure SS_control can perform a complete analysis, from model definitions through solution post-
processing. As such, there are no input datasets for the initial execution of the procedure. In general however,
the input and output datasets depend on the arguments (i.e., depend on which portion of the analysis is being
performed during the current execution). A summary of the input and output datasets for each phase of the
analysis is included in the following Sections. In each of the following Tables, “SS” signifies “SubStructure,”
“E" signifies “|nterface Element,” and "MM" signifies “Master Model.” In addition, the variables mesh, /dset,
and concase, are defined as mesh number, load set number and constraint case number, respectively.

3.2.4.1 Input Datasets

Table 3.3 contains a list of the datasets required as input for each phase of the analysis. A check mark
indicates that the dataset must {or may in some cases) exist. Note that some datasets must appear in more
than one database file (i.e., for each substructure). The column labeled “SS_control argument” indicates that
the listed argument is set to <t rue> while all others remaincfalse>.

Table 3.3. input Datasets Required by Procedure SS_control

SS_control files
argument Dataset SS | IE Description

DEFINE_SS None

DEFINE_EI CSM.SUMMARY...mesh Y Model summary for input SS
NODAL.COORDINATE...mesh Y SS nodal coordinates
NODAL.DOF..concase.mesh Y SS constraints
NODAL.SPEC_DISP.kdset..mesh Y SS specified displacements
NODAL.TRANSFORMATION...mesh Y Nodat global-to-local transtormations
NODAL.TYPE...mesh Y | Noge types
EtName.DEFINITION...mesh Y | Y | Element definition for input SS
EtName.ELTYPE...mesh Y | Finite element types along each IE
EtName.NODSS...mesh Y | SS connected to each node of each IE
EtName.NORMALS...mesh Y | Y | IE and FE element nodal normals
EltName.PARAMS...mesh Y | IE parameters
ERName.SCALE...mesh Y | Scale factor for each IE
EltName.SCOORD...mesh Y | Path coordinates for nodes on IE
EltName.SSID...mesh Y |List of SS connected to each IE
EftName.TANGENT_S...mesh Y | IE path tangent vectors
ERName TANGENT_T...mesh Y | IE surface tangent vectors
ENtName.TGC...mesh Y | Computational-to-global transformations

MERGE_SS CSM.SUMMARY...mesh Y | Y { Model summary
NODAL.COORDINATE...mesh Y | Y | Nodal coordinates
NODAL.DOF..concase.mesh Y | Y | Constraints
NODAL.EXT_FORCE./dset.mesh Y Applied nodal forces
NODAL.SPEC_DISP.ldset.concase.mesh| Y Specified displacements
NODAL.TRANSFORMATION...mesh Y | Y | Nodal global-to-local transformations
NODAL.TYPE...mesh Y | Node types

36 A Generic Interface Element for COMET-AR

June 22, 1994 3. New Control Procedures
Table 3.3. iInput Datasets Required by Procedure SS_control (Continued)
EName.DEFINITION...mesh Y | Y | Eilement definitions
EtName.PARAMS...mesh Y | IE parameters
EtName.MATRIX...mesh Y | Y | Element stiffness matrices
ASSEMBLE Operation on Master Model; see COMET-AR User’s Manual Assembly Processors
SOLVE Operation on Master Model; see COMET-AR User's Manual Solution Processors

POST_PROCESS

Operations user-defined

3.2.4.2 Output Datasets

Table 3.4 contains a list of datasets that may be created or updated by procedure SS_control. A check
mark indicates that the dataset must (or may in some cases) exist. Note that while the input datasets come
from various different database files, each phase of the analysis only writes to a single database file. The col-
umn labeled SS_control argument indicates that the listed argument is set to <true> while all others

remain<false>.
Table 3.4. Datasets Output From by Procedure SS_control
SS_control Files
argument Dataset 8S| IE |MM| Description
DEFINE_SS CSM.SUMMARY...mesh Y Model summary for input SS
NODAL.COORDINATE...mesh Y SS nodal coordinates
NODAL.DOF..concase.mesh Y SS constraints
NODAL.EXT_FORCE./dset..mesh Y SS applied nodal forces
NODAL.SPEC_DISP.ldset.mesh Y SS specified displacements
NODAL.TRANSFORMATION...mesh Y SS nodal global-to-local transformations
EltName.DEFINITION...mesh Y Element definition for input SS
EltName. MATRIX...mesh Y SS Element stiffness matrices
EltName NORMALS...mesh Y SS Element nodal normals
DEFINE_EI CSM.SUMMARY...mesh Y Model summary for input SS

NODAL.COORDINATE...mesh Y SS nodal coordinates
NODAL.DOF..concase.mesh Y SS constraints
NODAL.TRANSFORMATION...mesh Y IE nodal global-to-local transformations
NODAL.TYPE...mesh Y IE node types
EtName.DEFINITION...mesh Y Element definition for each IE
EitName.ELTYPE...mesh Y List of finite element types along each IE
EltName.NODSS...mesh Y List of SS connected to each IE
EltName.NORMALS...mesh IE nodal normals
EtName.PARAMS...mesh Y IE parameters
ENName.SCALE...mesh Y Scale tactor for each IE
EltName.SCOORD...mesh Y Path coordinates for nodes on {E
EltName.SSID...mesh Y List of SS connected to each IE
EitName.TANGENT_S...mesh Y IE path tangent vectors
EitName.TANGENT_T...mesh Y IE surtace tangent vectors
EitName.TGC...mesh Y Computational-to-global transformations

A Generic Interface Element for COMET-AR

37

3. New Control Procedures

June 22, 1984

Tabile 3.4. Datasets Output From by Procedure SS_control (Continued)

MERGE_SS CSM.SUMMARY...mesh Y | Model summary
NODAL.COORDINATE...mesh Y | Nodal coordinates
NODAL.DOF..concase.mesh Y | Constraints
NODAL.EXT_FORCE./dséet..mesh Y | Applied nodal forces
NODAL.SPEC_DISP.ldset.concase.mesh Y | Specified displacements
NODAL.TRANSFORMATION...mesh Y | Nodal global-to-local transformations
EName.DEFINITION...mesh Y | Element definitions
EtName.MATRIX...mesh Y | Element stiffness matrices

ASSEMBLE Operation on Master Model; see COMET-AR User's Manual Assembly Processors

SOLVE Operation on Master Model; see COMET-AR User's Manual Solution Processors

POST_PROCESS Operations user-defined

3.2.5. Subordinate Procedures and Processors

3.2.5.1 Subordinate Procedures
A list of procedures invoked directly by procedure SS_control is provided in Table 3.5. Documentation of

these procedures may be found in the Sections listed.
Table 3.5. Procedures Subordinate to Procedure SS_control

Procedure Type Function Refe
Initialize User-Written | Define required macrosymbols 33
SS model generation User-Written | Generate finite element modeis for substructures -_—
El_Define User-Written | Define interface elements 42
Defn_E|_Freedoms Utility Suppress unstiffened degrees of freedom 43
Form_EI_Stiffness Utility Form interface element stiffness matrix 44
initialize_FE Utility Initialize finite element substructures 52
Defn_FE_Freedoms Utility Suppress unstiffened degrees of freedom for finite 53

element substructures
Form_FE_Force Utility Form force vector for finite element substructures 54
Form_FE_Stiffness Utility Form element stiffness matrices for finite element 55
substructures
Merge_SS User-Written | Merge finite element substructures and interface 6.2
element libraries into a single master model
Assembie_Master Utility Assemble single, master system of equations 6.3
Solve_Master Wility Solve the master system of equations 6.4

A Generic imerface Element for COMET-AR

June 22, 1894 3. New Control Procedures

3.2.5.2 Subordinate Processors
Since the SS_control procedure may control an analysis from the model generation through post-
processing, all COMET-AR processors may be considered subordinate processors.

3.2.6. Current Limitations

SS_control will only perform linear, static, nonadaptive analyses. Additional limitations and assumptions
are noted in Section 1.5. '

3.2.7. Status and Error Messages

SS_control will not print any status or error messages directly. All messages will be produced by the
processors being used in the analysis. For specific error messages, the user should refer to Chapter 7 for the
El processors, Chapter 8 for the MSTR processor, and the COMET-AR User's Manual (Ref. 3.2-1) for all
others.

3.2.8. Examples and Usage Guidelines

3.2.8.1 Example 1: A complete analysis

Listed below is a sample script, including Unix commands, for running a complete analysis, from model
definition through post-processing the results. Files contain input runstreams and data as annotated.

cp SAR_EIPRC/proclib.gal .
cometar << \endinput

*gset echo off

. Set up the procedure library

*get plib = 28 . Set procedure library 1di
*open 28 proclib.gal /old . open procedure library

. Add User files
*add macros.clp . add user macro definitions
*add modell.clp . add SS 1 definitions file
*add model2.clp . add SS 2 definitions file
*add eidefn.clp . add IE definitions file
*add util.clp . add special utilities
*add post.clp . add post-processing file
*add initialize.clp . add initialization file

. Initialize Macrosymbols
*call Initialize
. Call Control Procedure

*call SS_control Define_SS = <true> ; -- . Define Substructures?

Define_EI = <true> ; -~ . Define Interface Elements?
Merge_SS = <true> ; -- . Merge Substructures?
Assemble = <true> ; -- . Assemble global system?
Solve = <true> ; -~ . Solve global system?
Post_Process = <true>) . Post-process?

Run Exit

\endinput

3.2.9. References

32-1 Stanley, GM., Hurlbut, B., Levit, L, Stehlin, B., Loden, W., and Swenson, L., COMET-AR User’s
Manual, LMSC Report #P032583, 1993.

A Generic Interface Element for COMET-AR 39

3. New Control Procedures June 22, 1994

THIS PAGE INTENTIONALLY BLANK

3-10 A Generic imertace Element for COMET-AR

June 22, 1984 3. New Control Procedures

3.3. Macrosymbol Definitions - Procedure Initialize

3.3.1. General Description

Procedure initlalize is a procedure template which the user may copy and customize for each
application. An example of the procedure is provided at the end of this Section. The macrosymbols defined in
procedure Inltialize are required for any analysis using interface elements. Should the user preter, the
macrosymbols may be defined directly in the script file (thus eliminating the need for this procedure).

3.3.2. Macrosymbol Summary

The macrosymbols required by procedure SS_control and its subordinate procedures and processors
are listed in Table 3.6. It is suggested that the user make use of the procedure template provided, atthough
this is not mandatory. The listed macrosymbols must however, be defined in some manner prior to calling

procedure SS_control.

Table 3.6. Macrosymbols Required by SS_control and Subordinate Procedures

Macrosymbol Type Definition
Num_SS integer Total number of substructures
SS_List{1:NumSS] Integer array | List of substructure id’s (one per substructure)
SS_Lib_Name[1:NumSS] | Character array | List of substructure library (file) names
SS_Define_Prc{1:NumSS] | Character array | List of substructure model definition procedures
SS_Idi[1:NumSS] Integer array | List of substructure logical device indices
SS_step[1:NumSS] Integer array | List of substructure load step numbers
S$S_con_set{1:NumSS] integer array | List of substructure constraint set numbers
SS_load_set[1:NumSS] Integer array | List of substructure load set numbers
SS_mesh[1:NumSS] Integer array | List of substructure mesh numbers
El_Proc Character Interface element processor name
El_Lib_Name Character Interface element library (file) name
El_Define_Prc Character Name of procedure for interface element definition
El_idi integer Logical device index for interface element library
El_step integer Load step number
El_Con_set Integer Constraint set number
El_Load_set integer Load set number
El_mesh Iinteger Mesh number
MM_Name Character Library (file) name for master model
Merge_SS_Prc Character Name of procedure for performing the merge
MM_idi integer Logical device index for master model library
MM_step Integer Master model load step number
MM_Con_set imeger Master model constraint set number
MM_Load_set integer Master mode! load set number
MM_mesh integer Master model mesh number
auto_dof_sup Integer Automatic drilling freedom suppression flag
auto_drill integer Artificial drilling stiffness flag
auto_triad integer Automatic nodal triad construction flag
Post_Prc Character Postprocessing procedure name

A Generic interface Element for COMET-AR

PRECEDING PAGE BLANK NOT FiLkiin

3. New Contro! Procedures June 22, 1994

3.3.3. Examples and Usage Guidelines

The following example is for an analysis which has a single interface element connecting two
substructures. In this case a procedure named Initlalize is used to define the macrosymbols. The user
should reterr to the CLAMP manual (Ref. 3.2-1) for an explanation of the*de£ directive syntax.

sprocedure Initialize
. Required Macrosymbol Definitions
. Define Substructure parameters:

*def/i Num_SS == 2 . Number of substructures
*def/i SS_List[1:2] == 1,2 . Ligst of SS id numbers
*def/p SS_Lib_Name([1] == modell.dbc . Library name for Ss 1
sdef/p SS_Lib_Name[2] == model2.dbc . Library name for SS 2
*def/p SS_Define_Prcil] == Model_l . Model def’'n 85 1

sdef/p SS_Define_Prc[2] == Model_ 2 . Model def’n SS 2

sdef/i SS_1di[1:2] == 1,2 . logical device indices
sdef/i SS_step[l:2] == 0,0 load step numbers
sdef/i SS_con_set[1:2] == 1,1 . constraint set numbers
sdef/i SS_load_set[1:2] == 1,1 . load set numbers

sdef/i SS_mesh([1:2] 0,0 . mesh numbers
. Define Interface element parameters:

sdef/p EI_Proc == EIl . PROCESSOR NAME
*def/p EI_Lib_Name == ‘'interface.dbc’ . Library name
sdef/p EI_Define_Prc == 'El_Define' . I.E. definition procedyre

sdef/i EI_1di
sdef/i EI_step
sdef/i EI_con_set
sdef/i EI_load_set

3 . logical device index
0 . load step number

1 . constraint set number
1
0

. load set number

sdef/i EI_mesh == . mesh number

. Define Master Model parameters:
*def/p MM_Name == ‘master.model’ . Library name
*def/p Merge_SS_Prc == 'Merge_SS' . merge procedure name
*def/i MM_1di == . logical device index
sdef/p MM_step == . load step number
*def/i MM_con_set == constraint set number

. load set number
. mesh number

*def/i MM_load_set ==
sdef/i MM_mesh ==
. Drilling freedom suppression flags

(= N = Y
.

sdef/1 auto_dof_sup == <true> . suppress freedoms?
*def/i auto_drill == <false> . artificial stiffness?
sdef/1i auto_triad == <false> . automatic nodal triads?

. Miscellaneous macrosymbols:
*def/p Post_Prc = ‘Post_Test' . Post processing procedure
*end

3.3.4. References

3.3-1 Felippa, Carlos A., The Computational Structural Mechanics Testbed Architecture: Volume Il -
Directives. NASA Contractor Report 178385, February 1989.

312 A Generic interface Element for COMET-AR

June 22, 1994 3. New Control Procedures

3.4. Stress Recovery Control - Procedure
Post_FE_Stress

3.4.1. General Description

Procedure Post_FE_Stress provides the user the options of recovering substructure element stress
resultants (at nodes, integration points, or centroids), substructure smoothed nodal stress resultants (pro-
vided element stress resultant data exists in the substructure database), and master model smoothed nodal
stress resultants (provided substructure nodal stress resultant data exists in the substructure databases).
This control procedure may be executed by the SS_control procedure (see Section 3.2) provided the
Post_Prc macrosymbol has been set f.e., *def /p Post_Prc = 'Post_FE_Stress').

3.4.2. Argument Summary

Procedure Post_FE_Stress may be invoked with the COMET-AR =call directive, employing the
arguments summarized in Table 3.2, which are described in detail subsequently.

Table 3.7. Procedure Post_FE_Stress input Arguments (functional order)

Argument Default Value Description
SPLIT_MM <true> Flag indicating that substructure results
need to be split from the master model.
STRESS_SS <true> Flag indicating that substructure stress
resultants need to be recovered.
NODAL_STRESS_MM <true> Flag indicating that a master model nodal
stress object shouid be formed.

3.4.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 3.2 are defined in detail. Note that
arguments are listed in alphabetical order.

3.4.3.1 SPLIT_MM Argument

Split Substructure data from Master Model Flag. This flag turns on or off the function which takes the
solution from the master model and splits out solution vectors for the substructures.

Argument syntax:

SPLIT_MM = spiit_ mm_flag

where split mm_flag may be set to either<t rue> (if the master model solution is to be split into substructure
vectors) or <false> (if this step is to be skipped and substructure displacement vectors already exist). This
flag will trigger the execution of existing utility procedures; no additional user action is required. (Default
value: <true>)

A Generic intertace Element for COMET-AR 3-13

3. New Control Procedures June 22, 1994

3.4.3.2 STRESS_SS Argument

Calculate Substructure Stress Flag. This flag tums on or off the function which calculates substructure
stress resultants based on the solution recovered using the SPLIT_MM argument.

Argument syntax:

STRESS_SS = stress_ss_flag

where stress_ss_flag may be set to either<t rue> (if the substructure stress resultants are to be calculated)
or <false> (if this step is to be skipped and substructure stress resultants already exist or are not needed).
This flag will trigger the execution of existing utility procedures; no additional user action is required. (Default
value: <true>)

3.4.3.3 NODAL_STRESS_MM Argument

Calculate Nodal Stress Flag. This fiag tums on or off the function which calculates nodal stress resultants
based on the element stress resultants recovered using the STRESS_SS argument.

Argument syntax:

NODAL_STRESS_MM = nodal_stress_mm

where nodal_stress_mm may be set to either <true> (if the smoothed nodal stress resultants are to be
calculated) or <false> (if this step is to be skipped and nodal stress resultants aiready exist or are not
needed). When <true>, this flag will create a nodal dataset in the substructure data libraries as well as the
master mode! library. This flag will trigger the execution of existing utility procedures; no additional user action

is required. (Default value: <t rues)

3.4.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the MSTR, ES, and NVST
processors. The MSTR processor requirements are documented in Chapter 8 of this document while the ES
and NVST requirements are documented in Ref. 3.2-1.

3.4.5. Subordinate Procedures and Processors

Three procedures may be invoked by Post_FE_Stress: Split_ MM, Comp_FE_Stress, and
Comp_Nodal_Stress. The Split_MM procedure calls only the MSTR processor. Comp_FE_Stress calls
only the ES processor for the appropriate finite element types. The Comp_Nodal_Stress procedure calls the
NVST and MSTR processors.

3.4.6. Current Limitations

Limitations on the procedure usage are, in general, dictated by the limitations on the MSTR (see Section
8), ES (see Ref. 3.2-1), and NVST processors. The user is referred to the documentation appropriate for each
processor. The one requirement of the procedure is that the procedure Initialize be invoked prior to the call to
Post_FE_Stress as several of the macrosymbols defined in Initlalize are used during the calculation of the
stress resuitants.

3-14 A Generic Intertace Element for COMET-AR

June 22, 1994 3. New Control Procedures

3.4.7. Status and Error Messages

Comp_FE_Stress will not print any status or error messages directly. All messages produced by the
MSTR (see Section 8), ES (see Ref. 3.2-1), and NVST processors. The user is referred to the documentation

appropriate for each processor.

3.4.8. Examples and Usage Guidelines

The Post_FE_Stress procedure may be called from within SS_control, however, it may also be used in
a stand-alone mode. In both cases, the procedure Initialize must be called before Post_FE_Stress is called.
The Post_FE_Stress procedure listing follows:

*procedure Post_FE_Stress (Split_MM = <true>; Stress_SS = <true>; --

. This procedure is used to control the postprocessing of stress resultants

*if <[Split_MM]> /then

*endif

*if <[Stress_SS]> /then

*endif

*if <[Nodal_sStress_MM]> /then

*endif

*end

Nodal_Stress_MM = <true>)

*remark AERNAT TSR NRR
*remark *** Split Displacements from Master Model to FE Substructures
tremark 222222222

*call Split_MM

iremark TR IATRRR NS

*remark *** Compute Stresses for FE Substructures
tremark LA 2222 R 222 LR

*call Comp_FE_Stress

*remark AR RR SRR

*remark *** Compute Nodal Stresses for FE Substructures and Merge
*remark *** Into Master Model
*remark L2 X2 X222 2 R X 24

*call Comp_Nodal_Stress

3.4.9. References

3.4-1

Stanley, G.M., Hurlbut, B., Levit, 1., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report #7032583, 1993.

A Generic intertace Element for COMET-AR 3-15

3. New Control Procedures June 22, 1994

THIS PAGE INTENTIONALLY BLANK

316 A Generic intertace Element for COMET-AR

June 22, 1994 4. Inwertace Element Cover Procedures

4. Interface Element Cover Procedures

4.1. Overview

This Chapter describes new COMET-AR command language procedures which control the execution of
the interface element processor (processor El). A Section is dedicated to each of these procedures, which
are listed in Table 4.1. -

Table 4.1. Outline of Chapter 4 : New Interface Element Cover Procedures

Section Procedure Function
. Template for user-written procedure which defines
2 El_Define interface elements
3 Detn_EI_Freedoms | Automatically suppresses inactive degrees of freedom
4 Form_E|_Stifiness | Forms interface element “stiffness” matrix

Cover procedures have been written for each of the functions performed by the El processor. Rather than
one procedure which performs all tasks (as has been done with the ES processor), several procedures are
used, each of which performs an individual task. While the EI_Define procedure must be written by the user,
the remaining two procedures, Defn_EI_Freedoms and Form_EIl_Stiffness, are utility procedures which are
automatically called by the SS_control procedure. These two procedures, included here for completeness,
require no user action or interaction beyond the definition of the macrosymbols described in Section 3.3.

A Generic interface Element for COMET-AR 4-1

PRECEDING PAGE BLANK NOT FILMED

4. inmerface Element Cover Procedures June 22, 1994

THIS PAGE INTENTIONALLY BLANK

4-2 A Generic imertace Element for COMET-AR

June 22, 1994 4. interitace Element Cover Procedures

4.2. Interface Element Definition - Procedure El_Define

4.2.1. General Description

Procedure El_Define is a procedure template which the user must copy and customize for each
application. An example of the procedure El_Define, is listed in Table 4.2.

Table 4.2. Template for User-Defined Procedure El_Define

*procedure El_Detine

. Define Interface Elements
run EN
. Processor Resets
reset Idi = <El_ldi>
reset mesh = <El_mesh>
reset step = <El_step>

reset load_set = <E|_Load_set>
reset cons_set = <El_Con_set>

. Element Definitions

DEFINE ELEMENTS
t#t*‘tttltttttttt#t't‘tt#“tttt‘tttlttt#ttttttt!tttt#lttttttttltt#t#tttt
ELEMENT 1 /DSPLINE=<dspline> /SCALE=<scale>
*do $i =1, <Num_SS>

=def/i ssid = <SS_id[<S$i>}>

SS <ssid> /ADI=<SS_Idi[<ssid>]>/FE/MESH=<SS_mesh|<ssid>}> -

ICONS=<SS_con_set[<ssid>]>
NODES = <node_list{<ssid>]p> /GSPLINE=<SS_geom|<ssid>]>

=enddo

EREBEERRERR LA ERIEENBEERR AR ERERREXEREE R BB EFREBRERE XX EE XXX EERABEE RS

send

For the case of multiple interface elements, the lines between the asterisk-filled lines should be repeated
for each additional interface element. All of the macrosymbols used above must be defined somewhere in the
runstream and must be visible to this procedure (i.e., they must either be global macrosymbols or have been
defined in the calling tree for this procedure). If procedure inltialize is used, the only additional macrosymbol
which must be defined prior to a call to this example of El_Define is <node_list{1:<Num_SS>]}> which
contains as character data a list of the nodes along the interface for each substructure.

The interface element is essentially defined by specifying the substructure edges along which a
connection is to be made. This definition may be performed by using the NODES option (as shown in Table
4.2), by specifying a series of coordinates through which a curve may be passed, or by specifying the two
nodes at either end of a straight line. In addition, boundary conditions may be applied to either the interface
pseudo-nodes or to the alpha-nodes attached to the substructures. The user is referred to Chapter 7 for a
complete explanation of the input.

4.2.2. Argument Summary

Users may choose to utilize procedure arguments however, the procedure SS_control will then also
need to be customized by the user. It is therefore recommended that required input parameters be defined
using macrosymbols rather than through procedure arguments.

A Generic Intertace Element for COMET-AR 43

PRECEDING PAGE BLANK NOT FILMED

4. Inertace Element Cover Procedures June 22, 1994

4.2.3. Argument Definitions
See previous Section.

4.2.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the El processor being
executed. These database requirements are documented in detail in Chapter 7.

4.2.5. Subordinate Processors and Procedures

El_Define has only one subordinate processor, the El processor of choice. Normally, there will also be no
need for subordinate procedures although the user may wish to define these for particularty complicated
models.

4.2.6. Current Limitations

El_Define is a user-written procedure. Limitations on the procedure usage are dictated by the limitations
of the El processor being used in the analysis. These limitations are documented in detail in Chapter 7.
Limitations on all El processors are discussed in Section 1.5.

4.2.7. Status and Error Messages

El_Define will not typically print any status or error messages directly (although the user may choose to
insert such messages). Error messages will be produced by the El processor being used in the analysis. The
user should refer to Chapter 7 for specific error messages produced by these processors.

4.2.8. Examples and Usage Guidelines

4.2.8.1 Example 1: Define a Single Interface Element connecting Two Substructures.

In this example, substructure 1 resides in library 1 and substructure 2 resides in library 2. Both are finite
element substructures. The interface element is written to library 3 and connects nodes 1, 3, 5, and 7 of
substructure 1 to nodes 25, 30, 35, 40, 45, and 50 of substructure 2 using cubic spline functions for both the
geometry and displacement of a hybrid variational interface element. No constraints have been defined.

sprocedure EI_Define
. Define Interface Elements
run EI1l
. Processor Resets
reset 1di
reset mesh
reset step
reset load_set
reset cons_set
. Element Definitions
DEFINE ELEMENTS
ELEMENT 1 /DSPLINE=3
8S 1 /LDI=1 /FE /MESH=0 /CONS=1
NODES = 1:7:2 /GSPLINE=3
SS 2 /LDI=2 /FE /MESH=0 /CONS=1
NODES = 25:50:5 /GSPLINE=3

L R I (|
2= OoOO0OWw

END_DEFINE
*end

4-4 A Generic imerface Element for COMET-AR

June 22, 1994 4. Inerface Element Cover Procedures

4.2.8.2 Example 2: Define two Interface Elements each connecting Two
Substructures.

In this example, substructure 1 resides in library 1, substructure 2 resides in library 2, and substructure 3
resides in library 3. All are finite element substructures. The interface elements are written to library 4. The
first hybrid variational interface element connects nodes 1, 3, 5, and 7 of substructure 1 to nodes 25, 30, 35,
40, 45, and 50 of substructure 2 using cubic spline functions for both geometry and displacement. The
second element connects nodes 35, 37, 39, 41, 43, and 45 of substructure 1 to nodes 110, 120, 130, 140,
150, and 160 of substructure 3 again using cubic spline functions for both the geometry and displacement of
the interface element. No constraints have been defined.

sprocedure EI_Define
. Define Interface Elements
run EI1
. Processor Resets
reset 1di
reset mesh
reset step
reset load_set
reset cons_set
. Element Definitions
DEFINE ELEMENTS
ELEMENT 1 /DSPLINE=3 /CURVED
8s 1 /LDI=1 /FE /MESH=0 /CONS=1
NODES = 1:7:2 /GSPLINE=3
SSs 2 /LDI=2 /FE /MESH=0 /CONS=1
NODES = 25:50:5 /GSPLINE=3
ELEMENT 2 /DSPLINE=3 /SCALE=10000. /CURVED
§s 1 /LDI=1 /FE /MESH=0 /CONS=1
NODES = 35:45:2 /GSPLINE=3
§S 3 /LDI=3 /FE /MESH=4 /CONS=2
NODES = 110:160:10 /GSPLINE=3
END_DEFINE

oo ouon
= OO

*end

4.2.9. References

None.

A Generic inertace Element for COMET-AR 4-5

4. meriace Element Cover Procedures June 22, 1984

THIS PAGE INTENTIONALLY BLANK

46 A Generic intertace Element for COMET-AR

June 22, 1984 4. inmertace Element Cover Procedures

4.3. Interface Element Drilling Freedom Suppression -
Procedure Defn_El_Freedoms

4.3.1. General Description

Procedure Defn_El_Freedoms is a utility procedure for performing automatic degree-of-freedom
suppression on the new nodes (pseudo-nodes and aipha-nodes) introduced by the interface element(s). It is
automatically invoked by the solution control procedure SS_control, and requires no user action or
interaction beyond the definition of the required macrosymbols (see Section 3.3).

4.3.2. Argument Summary

There are currently no arguments to this procedure. it is assumed that the macrosymbols discussed in
Section 3.3 have been defined and exist as macrosymbols visible to the SS_control procedure.

4.3.3. Argument Definitions

See previous Section.

4.3.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the El processor being
executed. These dataset requirements are documented in detail in Chapter 7.
4.3.5. Subordinate Processors and Procedures

Defn_E|_Freedoms has only one subordinate processor, the El processor of choice. it has no subordi-
nate procedures.
4.3.6. Current Limitations

Limitations on the procedure usage are dictated by the limitations of the El processor being used in the
analysis. These limitations are documented in detail in Chapter 7. Limitations on all El processors are dis-
cussed in Section 1.5.

4.3.7. Status and Error Messages

Defn_EI_Freedoms will not print any status or error messages directly. All messages will be produced by
the El processor being used in the analysis. The user should refer to Chapter 7 for specific error messages
produced by these processors.

A Generic Interface Element for COMET-AR 4.7

PRECEDING PAGE BLANK NOT FILMED

4. Inmertace Element Cover Procedures June 22, 1994

4.3.8. Examples and Usage Guidelines

The determination of the active degrees-of-freedom for the pseudo-nodes and the alpha-nodes is
currently made by the interface element processor during the definition of the elements. In the present
implementation, the computational frame for both the pseudo-nodes and the alpha-nodes are defined so that
the drilling degree-of-freedom is always the sixth degree-of-freedom. During the element definition, two
parameters are set, Drill_Dof and Drili_Sup, and saved in the EAT EltName.PARAMS...mesh (see Section
10.3 for a description of this data object). The parameter Drill_Dof is set to six. The parameter Drill_Sup, is
a flag which indicates whether or not the Drill_Dof degree of freedom is to be suppressed.

The decision to suppress the drilling degree-of-freedom is made based on two criteria. First, the
suppression need occur only if the interface element connects two substructures, as more than two
substructures cannot be coplanar. Second, if the difference between either substructure normal and the
average normal is greater than one degree, the drilling degree-of-freedom is not flagged for suppression (i.e.,
Drill_Sup is setto<false>). If the difference between each substructure normal and the average normal is
within one degree, the drilling degree-of-freedom is flagged for suppression (i.e., Drill_Sup is set to<true>).
Note that while the decision to suppress or not suppress degrees-of-freedom is made automatically during
the element definition, the procedure Defn_EI_Freedoms performs the actual suppression of any inactive
freedoms.

The Defn_El_Freedoms procedure is called automatically. A listing of the procedure has been provided
for completeness. The user should refer to Chapter 7 for a full description of the processor input.

sprocedure Defn_EI_Freedoms

. Suppress inactive degrees of freedom
run <EI_Proc>
. Processor Resets

reset 1di <EI_ldi>
reset mesh <EI_mesh>
reset step <EI_step>

reset load_set <EI_load_set>
reset cons_set <EI_cons_set>

. Issue command to set active freedoms
DEFINE FREEDOMS
STOP

B nun

send

4.3.9. References

None.

48 A Generic intertace Element for COMET-AR

June 22, 1954 4. intertace Element Cover Procedures

4.4. Interface Element Stiffness Matrix Generation -
Procedure Form_EIl_Stiffness

4.4.1. General Description

Procedure Form_El_Stiffness is a utility procedure for forming the interface element stiffness matrices.
It is invoked automaticaily by the solution control procedure SS_control, and requires no user action or inter-
action beyond the definition of the required macrosymbols (see Section 3.3).
4.4.2. Argument Summary

There are currently no arguments to this procedure. It is assumed that the macmsymbol% discussed in
Section 3.3 have been defined and exist as macrosymbols visible to the SS_control procedure.

4.4.3. Argument Definitions

See previous Section.

4.4.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the El processor being
employed. These dataset requirements are documented in detail in Chapter 7.
4.4.5. Subordinate Processors and Procedures

Form_EIl_Stiftness has only one subordinate processor, the El processor of choice. it has no subordi-
nate procedures.
4.4.6. Current Limitations

Limitations on the procedure usage are dictated by the limitations ot the El processor being used in the
analysis. These limitations are documented in detail in Chapter 7. Limitations on ail El processors are docu-
mented in Section 1.5.

4.4.7. Status and Error Messages

Form_EI_Stitfness will not print any status or error messages directly. All messages will be produced by
the El processor being used in the analysis. The user should refer to Chapter 7 for specific error messages
produced by these processors.

A Generic intertace Element for COMET-AR 4-9

4. imertace Element Cover Procedures June 22, 1994

4.4.8. Examples and Usage Guidelines

The Form_EIL_Stifiness procedure, called automatically from within the SS_control procedure, will
trigger the formation of ali element stiffness matrices for elements created by the specified El processor. As
with the Defn_EI_Freedoms procedure, the user need only ensure that the macrosymbols defined in
procedure Inltialize (see Section 3.3) are visible to the SS_control procedure. A listing of the procedure has
been provided for completeness. The user should refer to Chapter 7 for a full description of the processor

input.

sprocedure Form_EI_Stiffness

. Form interface element stiffness matrices
run <EI_Proc>
. Processor Resets

reset 1ldi = <EI_1di>
reset mesh = <EI_mesh>
reset step = <EI_step>

reset load_set <EI_load_set>
reset cons_set = <EI_cons_set>
. Issue command to set active freedoms
FORM STIFFNESS/MATL
STOP
*end

4.4.9. References

None.

4-10 A Generic Imertace Element for COMET-AR

June 22, 1984 5. Finite Element Analysis Procedures

5. Finite Element Analysis Procedures

5.1. Overview

This Chapter describes new COMET-AR command language procedures which replace the standard
finite element analysis procedures when performing an analysis with interface elements. The use of these

procedures is completely masked from the yser provided procedure SS_control is used to perform the anal-
ysis. No user action is required for these utilities other than that the appropriate macrosymbols be defined.

A Section is dedicated to each of these replacement utility procedures, which are listed in Table 5.1.
Table 5.1. Outline of Chapter 5 : New Finite Element Analysis Procedures

Section Procedure Function
2 Initialize_FE Initializes finite element databases
3 Defn_FE_Freedoms | Automatically suppresses inactive degrees of freedom
4 Form_FE_Force Forms finite element applied force vector
5 Form_FE_Stiffness | Forms finite element stiffness matrices
; 6 Comp_FE_Stress Computes element stress resuftant data
7 Comp_Nodal_Stress | Computes smoothed nodal stress resultant data

Most of the procedures discussed in this Chapter use arguments named MESH (which defines the mesh
number of the finite element model) and STEP (which defines the nonlinear load step number). While the
interface element does not currently have either adaptive or nonlinear capabilities, these two arguments are
used to identify data object names within COMET-AR and are included for consistency with existing
procedures and processors (e.g., L_STATIC_1, ASM). Both MESH and STEP will usually be zero (the
default vaiues). it should be noted however, that the interface element could be used to couple finite element
models for which neither MESH nor STEP are zero provided only a linear analysis is performed. For example,
an analyst may wish to perform a coupled linear analysis of two models which have each been through an
adaptive analysis resulting in a final nonzero mesh for each model. In this case, the SS_mesh[1:2]
macrosymbols would be set to nonzero mesh numbers corresponding to the desired mesh numbers in each
adaptive analysis.

A Generic inwriace Element for COMET-AR 51

5. Finite Eloment Analysis Procedures

June 22, 1994

THIS PAGE INTENTIONALLY BLANK

52

A Generic imerface Element for COMET-AR

June 22, 1894 5. Finite Element Analysis Procedures

5.2. Finite Element Initialization - Procedure
Initialize_FE

5.2.1. General Description

The inttialization process for finite element analysis (in COMET-AR) consists of several phases: initializ-
ing data structures; reordering of nodes for optimal bandwidth,.fill or profile; generating the proper equation
numbers based on the new nodal ordering and constraints; suppressing inactive degrees-of-freedom. With
the addition of the interface element capability, the initialization process must be done separately for each
substructure and the reordering of nodes or equations must occur after the interface elements have been
defined. Thus, the original COMET-AR finite element initialization procedure is no longer adequate and has
been split into its components. The data structure initialization is performed by the procedure Initlalize_FE
which executes the ES processors. Other functions are performed later in the analysis using additional new
procedures, each of which is documented in later sections. Initlalize_FE is called automatically by
SS_control (see Section 3.2) using macrosymbols defined in the Initlalize procedure (see Section 3.3).

5.2.2. Argument Summary

SS_control invokes procedure Initialize_FE with the COMET-AR =call directive, employing the argu-
ments summarized in Table 5.2, which are described in detail subsequently.

Table 5.2. Procedure Initlalize_FE input Arguments

Argument | Default Value Description
LDI 1 Logical device index
MESH 0 Mesh number of model to be initialized

5.2.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2 are defined in more detail. Note
that arguments are listed in atphabetical order.

5.2.3.1 LDI Argument

Logical Device Index. This argument is the logical unit for the database containing the model data for the
substructure being processed.

Argument syntax:

LDI = idi

where the integer idi must be set to an appropriate, active library number. Procedure SS_control (see
Section 3.2) passes a macrosymbol, SS_Idi[l], through this argument for each substructure | defined by the
user. (Default value:1)

A Generic Interface Element for COMET-AR 3
PRECEDING PAGE BLANK NOT FILMED

5. Finite Element Analysis Procedures June 22, 1994

5.2.3.2 MESH Argument

Mesh Number. This argument identifies the number of the finite element mesh to be processed within
library idi.

Argument syntax:

MESH = mesh

where the integer mesh must be set to a valid mesh number. Procedure SS_control (see Section 3.2)
passes a macrosymbol, SS_meshfl], through this argument for each substructure | defined by the user.
(Detault value: None)

5.2.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the ES processor being
empioyed. The dataset requirement for the Initialize command of the ES processors may be found in the
COMET-AR User's Manual (Ret. 5.2-1).

5.2.5. Subordinate Processors and Procedures

Inktialize_FE has two subordinate procedures, CSMget and ES. While Initlalize_FE has no directly sub-
ordinate processors, procedure ES does execute the ES processor. CSMget interacts directly with the data-
base.

5.2.6. Current Limitations

Initialize_FE is a general purpose procedure and the only limitations on its usage are dictated by the lim-
iations of the ES processor being employed. The user should refer to the Element Processor Chapters of the
COMET-AR User’s Manual (Ref. 5.2-1) for specific processor limitations.

5.2.7. Status and Error Messages

inktialize_FE does not print any status or error messages directly. All messages will be produced by the
ES processor being employed. The user should refer to the Element Processor Chapters of the COMET-AR
User's Manual (Ref. 5.2-1) for specific processor limitations

54 A Generic Intertace Element for COMET-AR

June 22, 1954 5. Finite Element Analysis Procedures

5.2.8. Examples and Usage Guidelines

The Initialize_FE procedure, called automatically from within the SS_control procedure, will initialize all
finite element types within a specific substructure. The SS_control procedure calls Initlalize_FE with the
appropriate macrosymbols substituted for the two arguments. The user need only ensure that the macrosym-
bols defined in procedure Initlallze (see Section 3.3) are visible to the SS_control procedure. A listing of the
inktialize_FE procedure follows.

*procedure Initialize FE (1di = 1; mesh = 0)
. Initialize Finite Element configurations
. Retrieve element type names and processor names
*call CSMget (1di=[1di); mesh=[mesh]; attrib=NET; macro=ES_NET
*do Set = 1, <ES_NET>
*call CSMget (1di=[1di); mesh=[mesh]; iet=<$et>; --
attrib=zEltTyp; macro=ES_PROC[<Set>])
*call CSMget (1di=[1di]; mesh=[mesh]; iet=<$et>; --
attrib=EltPro; macro=ES_TYPE[<Set>])
*enddo
. Call ES procedure to initialize finite element data objects
*call ES (function = ‘'INITIALIZE'; mesh=[mesh])
*end

5.2.9. References

5.2-1 Staniey, G.M., Huribut, B., Levit, |., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User’s
Manual, LMSC Report #P032583, 1993.

A Generic Inwerface Element for COMET-AR 55

5. Finim Element Analysis Procedures : June 22, 1984

THIS PAGE INTENTIONALLY BLANK

56 A Generic Intertace Element for COMET-AR

June 22, 1694 §. Finite Element Analysis Procedures

5.3. Finite Element Drilling Freedom Suppression -
Procedure Defn_FE_Freedoms

5.3.1. General Description

The suppression of the drilling freedoms normmally occurs in the solution procedure for linear static analy-
sis, procedure L_STATIC_1 (Ref. 5.2-1). Due to the introduction of the interface element, this solution proce-
dure no longer exists and its functions have been distributed among several procedures. Procedure
Detn_FE_Freedoms operates on a single finite element substructure and thus is called once for each finite
element substructure in the system. This procedure is automatically called from within procedure SS_control
(see Section 3.2) using macrosymbols defined in procedure Initialize (see Section 3.3).

5.3.2. Argument Summary

SS_control invokes procedure Detn_FE_Freedoms with the COMET-AR =call directive, employing the
arguments summarized in Table 5.2, which are described in detail subsequently.

Table 5.3. Procedure Defn_FE_Freedoms Input Arguments

Argument Defauit Value Description
AUTO_DOF_SUP <true> Auto. dof suppression flag
AUTO_DRILL <false> Artificial drilling stiffness flag
AUTO_TRIAD <false> Auto nodal triads flag
CONSTRAINT_SET 1 Constraint set number
LDI 1 Logical device index
MESH 0 Mesh number of model

5.3.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2 are defined in detail. Note that
arguments are listed in alphabetical order.
5.3.3.1 AUTO_DOF_SUP Argument

Automatic Degree of Freedom Suppression Flag. This argument is a flag which indicates whether or not
unstiffened degrees of freedom are to be suppressed automatically.

Argument syntax:

AUTO_DOF_SUP = auto_dof_sup_flag

where auto_dof sup_flag may be set to either <true> or <false>. A value of <true> indicates that
unstiffened freedoms should be suppressed; a value of <false> indicates that those freedoms should not be
suppressed. SS_control (see Section 3.2) passes a macrosymbol, auto_dof_sup, through this argument.
(Default: <true>)

A Generic Inwerface Element for COMET-AR 57

PRECEDING PAGE BLANK NOT FILNED

5. Finite Element Analysis Procedures June 22, 1964

5.3.3.2 AUTO_DRILL Argument

Automatic Drilling Stiffness Flag. This argument is a flag which indicates whether or not artificial stiffness
should be added to unstiffened drilling degrees of freedom.

Argument syntax:

AUTO_DRILL = auto_drill_fiag

where auto_drill_fiag may be set to either <true> or <false>. A value of <true> indicates that artificial
stiffness should be added to unstiffened drilling degrees of freedom. A value of <false> indicates that no

artificial stiffness should be added. SS_control (see Section 3.2) passes a macrosymbol, auto_drill, through

this argument. (Default: <false>)

5§.3.3.3 AUTO_TRIAD Argument

Automatic Triad Generation Flag. This argument is a flag which indicates whether or not average nodal
normal triads should be generated. Once generated, these triads define the new computational reference
frames for the finite element nodes.

Argument syntax:

AUTO_TRIAD = auto_triad _flag

where auto_triad_fiag may be set to either <true> or<false>. A value of <true> indicates that new nodal
normal triads should be computed. A value of <false> indicates that no new triads should be formed.
SS_control (see Section 3.2) passes a macrosymbol, auto_triad, through this argument. (Default:
<false>)

5.3.3.4 CONSTRAINT_SET Argument

Constraint set number. This argument identifies the constraint set number for the substructure being pro-
cessed.

Argument syntax:

CONSTRAINT_SET = constraint_set

where the integer constraint_set must be set to a valid constraint set number. SS_control (see Section 3.2)
passes a macrosymbol, SS_con_set[l], through this argument for each substructure I. This macrosymbol is
one of the required macrosymbols discussed in Section 3.3. (Default value: 1)

58 A Generic Interface Element for COMET-AR

June 22, 1994 5. Finite Element Analysis Procedures

5.3.3.5 LDI Argument"

Logical Device Index. This argument is the logical unit for the database containing the model data for the
substructure being processed.

Argument syntax:

LDI = idi

where the integer ki must be set to an appropriate active library number. SS_control (see Section 3.2)
passes a macrosymbol, SS_IdI[1], through this argument for each substructure 1. This macrosymbol is one of
the required macrosymbols discussed in Section 3.3. (Default value: 1)

5.3.3.6 MESH Argument
Mesh Number. This argument identifies the number of the mesh to be processed within library /di.
Argument syntax:

MESH = mesh

where the integer mesh must be set to a valid mesh number. SS_control (see Section 3.2) passes a
macrosymbol, SS_mesh[l], through this argument for each substructure 1. This macrosymbol is one of the
required macrosymbols discussed in Section 3.3. (Defautt value: 0)

5.3.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the subordinate processors
and procedures. These dataset requirements are documented in the appropriate sections of the COMET-AR
User's Manual (Ref. 5.2-1).

5.3.5. Subordinate Processors and Procedures

Detn_FE_Freedoms calls the utility procedure ES and executes the processor COP. I the AUTO_TRIAD
argument has been set to <t rue>, then the processor TRIAD will also be executed. The subordinate proce-
dure and processors are documented in the COMET-AR User's Manual (Ref. 5.2-1).

5.3.6. Current Limitations

Limitations on the procedure usage are dictated by the limitations of the ES, TRIAD, and COP proces-
sors. These limitations are documented in the COMET-AR User's Manual (Ref. 5.2-1).

5.3.7. Status and Error Messages

Detn_FE_Freedoms will not print any status or error messages directly. All messages will be produced
by the ES, TRIAD, and COP processors. The user should refer to the COMET-AR User's Manual (Ref. 5.2-1)
for specific error messages produced by these processors.

A Generic Intertace Element for COMET-AR 59

5. Finite Element Analysis Procedures June 22, 1994

5.3.8. Examples and Usage Guidelines

The macrosymbols auto_dof_sup, auto_drill, and auto_triad (defined within procedure Initialize)

determine which functions are performed within Defn_FE_Freedoms. The Defn_FE_Freedoms procedure
is calied automatically by the SS_control procedure. A listing of Defn_FE_Freedoms follows.

*procedure Defn_FE_Freedoms (auto_dof_sup=<true>; auto_drill=<false>; --
auto_triad=<false>; constraint_set=1; 1di=1; mesh=0)

. Perform drilling stiffness suppression as specified

. Define nodal flags for drilling stiffness (AUTO_DRILL Option)

¢def/i auto_drill[l:3) =0

sdef/i auto_drill[l) = {auto_drill)

*def/i auto_drill_o = <auto_drill{l]> . Option

*def/i auto_drill_t = <auto_drill(2])> . Tolerance (degrees
sdef/i auto_drill_s = <auto_drill(3)> . scale factor

*if < <cauto_drill_o> > /then
scall ES (function = ‘DEFINE NORMALS’; mesh=[mesh)])
*call ES (function = ’‘DEFINE DRIL_FLAGS’; mesh={mesh] --
drill_tol = <auto_drill_t>)
sendif
. Replace Current Triads with Avg. Normal-Aligned Triads (AUTO_TRIAD)
*def/i auto_triad[1l:2] =0
*def/i auto_triad[1] [auto_triad)
*def/i auto_triad_o <auto_triad[l])> . Option
*def/i auto_triad_t <auto_triad[2])> . Tolerance (degrees)
*if < <auto_triad_o> > /then
*call ES (function = ’'DEFINE NORMALS’; mesh={mesh])
*call ES (function = ‘DEFINE DRIL_FLAGS’; mesh={mesh] --

Run Triad
LDI = [14i)
MESH = [mesh]
GO
sendif
. Suppress Un-stiffened Degrees of Freedom (AUTO_DOF_SUP)
*def/i auto_dof[l:2] =0
sdef/i auto_dof[l) = [auto_dof_sup]
*def/i auto_dof_o = <auto_dof[1]> . Option
*def/i auto_dof_t = <auto_dof[2]> . Tolerance (degrees)

¢if < <auto_dof_o> > /then
*call ES (function = --
‘DEFINE FREEDOMS (1di), NODAL.ELT_DOF..[constraint_set].[mesh}’; --
mesh={mesh]; drill_tol=<auto_dof_t>)
sendif
. Construct Nodal DOF Table (Number Equations)
Run COP
MODEL [l1di] CSM.SUMMARY... [mesh]
*if < [auto_dof_sup)] > /then . UPDATE
DOF_SUPPRESS INPUT =[1di],NODAL.ELT_DOF.. [constraint_set]. {mesh] --
DOFDAT=[1di) [constraint_set] ([mesh]
*endif
SELECT OLD [1di] (constraint_set] [mesh] DOFDAT
CONSTRAIN
RESET ZERO = NO
RESET NONZERO = NO
DONE
STOP
*end

5.3.9. References
53-1 Stanley, G.M., Hurbut, B., Levit, ., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User’s

Manual, LMSC Report #°032583, 1993.

510

A Generic Interface Element for COMET-AR

June 22, 1904 5. Finite Element Analysis Procedures

5.4. Finite Element Consistent Load Definition -
Procedure Form_FE_Force

5.4.1. General Description

Procedure Form_FE_Force calculates consistent nodal forces based on input element and nodal forces.
The procedure operates on a single finite element substructure and thus is called once for each finite element
substructure in the system. This procedure is called automatically from within procedure SS_Control (see
Section 3.2) using macrosymbols defined in the Initialize procedure (see Section 3.3).

5.4.2. Argument Summary. _

SS_control invokes procedure Form_FE_Force with the COMET-AR »call directive, employing the
arguments summarized in Table 5.2, which are described in detail subsequently.

Table 5.4. Procedure Form_FE_Force Input Arguments

Argument Detault Value Description
LDI None Logical device index
LOAD_SET None Load set number
MESH None Mesh number of model
STEP None Nonlinear load step number

5.4.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2 are defined in detail. Note that
arguments are listed in alphabetical order.

5.4.3.1 LDI Argument

Logical Device Index. This argument is the logical unit for the database containing the model data for the
substructure being processed.

Argument syntax:

LDl = /di

where the integer idi must be set to an appropriate active library number. SS_control (see Section 3.2)
passes a macrosymbol, SS_IdI[i], through this argument for each substructure I. This macrosymbol is one of
the required macrosymbols discussed in Section 3.3.(Default value: None)

A Generic Interface Element for COMET-AR 5-11

S. Finite Element Analysis Procedures June 22, 1994

5.4.3.2 LOAD_SET Argument
Load set number. This argument identifies the load set number for the substructure being processed.
Argument syntax:

i

LOAD_SET = load_set

where the integer Joad_set must be set to a valid load set number. SS_control (see Section 3.2) passes a
macrosymbol, SS_load_set{], through this argument for each substructure I. This macrosymbol is one of the
required macrosymbols discussed in Section 3.3. (Default vakie: None)

5.4.3.3 MESH Argument
Mesh Number. This argument identifies the number of the mesh to be processed within the library /.
Argument syntax:

MESH = mesh

where the integer mesh must be set to a valid mesh number. SS_control (see Section 3.2) passes a
macrosymbol, SS_mesh(l], through this argument for each substructure 1. This macrosymbol is one of the
required macrosymbols discussed in Section 3.3. (Default value: None)

5.4.3.4 STEP Argument

Noniinear load step number. This argument identifies the load step number for the substructure being
processed.

Argument syntax:

STEP = load_step

where the integer Joad_step must be set to a valid load set number. SS_control (see Section 3.2) passes a
macrosymbol, SS_step[i], through this argument for each substructure I. This macrosymbol is one of the
required macrosymbols discussed in Section 3.3. (Default value: None)

5.4.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the subordinate processors
and procedures. These dataset requirements are documented in the appropriate sections of the COMET-AR
User's Manual (Ref. 5.2-1).

5.4.5. Subordinate Processors and Procedures

Form_FE_Force calls the utility procedure FORCE which in tum calis the utility procedure ES. The ES
procedure executes finally the ES processor. These procedures and processor are documented in the
COMET-AR User's Manual (Ref. 5.2-1).

512 A Generic Interface Element for COMET-AR

June 22, 1994 5. Finite Element Analysis Procedures

5.4.6. Current Limitations

Form_FE_Force is a general purpose procedure. Limitations on the procedure usage are dictated by the
limitations of the ES processors. These limitations are documented in the COMET-AR User’s Manual (Ref.
5.2-1).

5.4.7. Status and Error Messages

Form_FE_Force will not print any status or error messages directly. All messages will be produced by
the ES processors. The user should refer to the COMET-AR User's Manual (Ref. 5.2-1) for specific error
messages produced by these processors.

5.4.8. Examples and Usage Guidelines

The Form_FE_Force procedure, called automatically from within the SS_control procedure, calls a sec-
ond procedure, FORCE, which forms a nodal force vector given input element and nodal loads by executing
the ES processor. The SS_control procedure calls Form_FE_Force with the appropriate macrosymbols
substituted for the arguments. The user need only ensure that the macrosymbols defined in procedure Initial-
ize (see Section 3.3) are visible to the SS_control procedure. A listing of the Form_FE_Force procedure fol-
lows.

*procedure Form_FE_Force (step; load_set; 1di; mesh)

EXTERNAL ; --
[1di]

[1di],NODAL.SPEC_FORCE. [load_set] .0. [mesh]
[1di], NODAL.EXT_FORCE. [load_set].0. [mesh]

*call FORCE (type
1di
input_force
output_force

S me he we W Ny

load_set [load_set] -
load_factor 1,0 -
mesh [mesh]

*end

5.4.9. References

5.4-1 Staniey, G.M., Hurlbut, B., Levit, ., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User’s
Manual, LMSC Report #2032583, 1993.

A Generic Inwrface Element for COMET-AR 5-13

5. Finite Element Analysis Procedures June 22, 1994

THIS PAGE INTENTIONALLY BLANK

5-14 A Generic Intertace Element for COMET-AR

June 22, 1994 5. Finite Element Analysis Procedures

5.5. Finite Element Stiffness Matrix Formation -
Procedure Form_FE_Stiffness

5.5.1. General Description

Procedure Form_FE_Stiffness caiculates the element stiffness matrices for finite element substructures.
The procedure operates on a single finite element substructure and thus is called once for each finite element
substructure in the system. The procedure is called automatically from within procedure SS_Control (see
Section 3.2) using macrosymbols defined in the Initlalize procedure (see Section 3.3).

5.5.2. Argument Summary

SS_control invokes procedure Form_FE_Stifiness with the COMET-AR =call directive, employing the
arguments summarized in Table 5.2, which are described in detail subsequently.

Table 5.5. Procedure Form_FE_Stiffness Input Arguments

Argument | Default Value Description
LDI None Logical device index
LOAD_SET None Load set number
MESH None Mesh number of model
STEP None Nonlinear load step number

5.5.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2 are defined in detail. Note that
arguments are listed in alphabetical order.

5.5.3.1 LDI Argument

Logical Device Index. This argument is the logical unit for the database containing the model data for the
substructure being processed.

Argument syntax:

LDl = kdi

where the integer kii must be set to an appropriate active library number. SS_control (see Section 3.2)
passes a macrosymbol, SS_Idi[l], through this argument for each substructure I. This macrosymbol is one of
the required macrosymbols discussed in Section 3.3. (Detfault value: None)

A Generic Interface Element for COMET-AR 5-15

PRECEDING PAGE BLANK NOT FILMED

5. Finite Element Analysis Procedures June 22, 1994
5.5.3.2 LOAD_SET Argument
Load set number. This argument identifies the load set number for the substructure being processed.
Argument syntax:

LOAD_SET = load_set

where the integer Joad_set must be set to a valid load set number. SS_control (see Section 3.2) passes a
macrosymbol, SS_load_set{l], through this argument for each substructure . This macrosymbol is one of the
required macrosymbols discussed in Section 3.3. (Default value: None)

5.5.3.3 MESH Argument
Mesh Number. This argument identifies the number of the mesh to be processed within the library k.
Argument syntax:

MESH = mesh

where the integer mesh must be set to a valid mesh number. SS_control (see Section 3.2) passes a
macrosymbol, SS_mesh(l], through this argument for each substructure I. This macrosymbol is one of the
required macrosymbols discussed in Section 3.3. (Defautt value: None)

5.5.3.4 STEP Argument

Nonlinear load step number. This argument identifies the load step number for the substructure being
processed.

Argument syntax:

STEP = load_step

where the integer load_step must be set to a valid load set number. SS_control (see Section 3.2) passes a
macrosymbol, SS_step([l], through this argument for each substructure I. This macrosymbol is one of the
required macrosymbols discussed in Section 3.3. (Default value: None)

5.5.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the subordinate processors
and procedures. These dataset requirements are documented in the appropriate sections of the COMET-AR
User’s Manual (Ref. 5.2-1).

5.5.5. Subordinate Processors and Procedures

Form_FE_Stiffness calls the utility procedure ES which executes the ES processor. The procedures and
processor are documented in the COMET-AR User's Manual (Ref. 5.2-1).

5-16 A Generic Interface Element for COMET-AR

June 22, 1984 5. Finite Element Analysis Procedures

5.5.6. Current Limitations

Form_FE_Stiffness is a general purpose procedure. Limitations on the procedure usage are dictated by
the limitations of the ES processors. These limitations are documented in the COMET-AR User's Manual

(Ref. 5.2-1).

5.5.7. Status and Error Messages

Form_FE_Stifiness will not print any status or error messages directly. All messages will be produced by
the ES processors. The user should refer to the COMET-AR User’'s Manual (Ref. 5.2-1) for specific emor
messages produced by these processors.

5.5.8. Examples and Usage Guidelines

‘The Form_FE_Stiftness procedure, called automatically from within the SS_control procedure (see
Section 3.2), calls a second procedure, ES (Ref. 5.2-1), which calls the specific finite element processor to
compute the element stitfness matrices. The SS_control procedure calls Form_FE_Stiffness with the
appropriate macrosymbols substituted for the arguments. The user must ensure that the macrosymbols
defined in procedure initiallze (see Section 3.3) are visible to the SS_control procedure. A listing of the
Form_FE_Stifiness procedure foliows.

*procedure Form_FE_Stiffness (step; load_set; 1ldi; mesh)

*call ES (function ‘FORM STIFFNESS/MATL’ R

stiffness = MATL_STIFFNESS ; --
ldai = [1di] : --
load_set = [load_set] ; ==
step = [step] ; ==
mesh = [mesh])

send

5.5.9. References

55-1 Stanley, G.M., Hurlbut, B., Levit, |, Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report #P032583, 1993.

A Generic inwrface Element for COMET-AR 517

S. Finite Element Analysis Procedures June 22, 1994

THIS PAGE INTENTIONALLY BLANK

518 A Generic Interface Element for COMET-AR

June 22, 1994 §. Finite Element Analysis Procedures

5.6. Finite Element Stress Recovery - Procedure
Comp_FE_Stress

5.6.1. General Description

Procedure Comp_FE_Stress calculates the finite element stress resultants for each element in each
substructure. The procedure may be called directly or may be invoked through a call to the Post_FE_Stress
procedure (see Section 3.4).

5.6.2. Argument Summary

The procedure Comp_FE_Stress may be invoked with the COMET-AR <call directive employing the
arguments summarized in Table 5.2 (which are described in detail subsequently), or called through the proce-
dure Post_FE_Stress provided the default values for all of the arguments listed are acceptable. If any default
value requires modification, Comp_FE_Stress should be invoked directly so that the proper argument value
may be passed.

Table 5.6. Procedure Comp_FE_Stress input Arguments

Argument Detault Value Description
DELETE <true> Mark stress resultant object for
deletion from database
LOCATION INTEG_PTS Location at which element stress
resultants are calculated
MESH 0 Mesh number of model
STR_DIRECTION 1 Stress direction

5.6.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 5.2 are defined in detail. Note that
arguments are listed in aiphabetical order.
5.6.3.1 DELETE Argument

Delete Existing Dataset Flag. This argument flags existing stress data objects for deletion.

Argument syntax:

DELETE = delete_flag

where the integer delete_flag must be set to either <true> (if an existing stress object is to be deleted) or
<false> (if is an existing stress object is to remain) Section 3.3. (Default value: None)

A Generic interface Element for COMET-AR 5-19

PRECEDING PAGE BLANK NOT FILMED

§. Finite Element Analysis Procedures June 22, 1994

5.6.3.2 LOCATION Argument

Stress Resultant Location. This argument identifies the location within each element at which the stress
resultants are calculated for each substructure.

Argument syntax:

LOCATION = location

where the character string location must be set to CENTROIDS, NODES, or INTEG_PTS. (Default value:
INTEG_PTS)

5.6.3.3 MESH Argument
Mesh Number. This argument identifies the number of the mesh to be processed.
Argument syntax:

MESH = mesh

where the integer mesh must be set to a valid mesh number (i.e., a mesh number which exists in the each of
the substructure libraries). (Default vaiue: 0)

5.6.3.4 STR_DIRECTION Argument
Stress Direction. This argument identifies the direction in which the stress resultants are to be computed.
Argument syntax:

STR_DIRECTION = direction

where the direction may be either character or integer and must be set to a valid stress direction as defined in
Section 7.2.6.24 of Ref. 5.2-1. (Default value: 1 orGLOBAL X)
5.6.4. Database Input/Output Summary

All database input and output requirements are imposed by the ES processor. These requirements are
documented in detail in Ref. 5.2-1.
5.6.5. Subordinate Processors and Procedures

The Comp_FE_Stress procedure has two subordinate procedures: CSMget and STRESS. The proce-
dure CSMget accesses the CSM data object and the procedure STRESS calls the ES processor to calculate
the stress resultants. The user is referred to Ref. 5.2-1 for details on these procedures and processor.

5.6.6. Current Limitations

Limitations on the procedure usage are dictated by the limitations of the ES processor and the CSMget
and STRESS procedures. The user is referred to Ref. 5.2-1 for details on these procedures and processor.

$-20 A Generic interface Element for COMET-AR

June 22, 1994 S. Finite Element Analysis Procedures

5.6.7. Status and Error Messages

Comp_FE_Stress does not print any error messages directly. All messages will be produced by the ES
processor or the CSMget and STRESS procedures. The user is referred to Ref. 5.2-1 for details on these
procedures and processor.

5.6.8. Examples and Usage Guidelines

The Comp_FE_Stress procedure may be invoked through a call to the Post_FE_Stress procedure or
through a direct call. The user need only ensure that the macrosymbols defined in the procedure Initialize
are visible to the Comp_FE_Stress procedure. A listing of the procedure follows.

*procedure Comp_FE_Stress (Location = INTEG_PTS; str_direction = 1; --
mesh = 0; Delete = <true>)
*do $k = 1,<Num_ss>
*def/i 141 =1
*open <ldi> <SS_Lib_Name [<$k>)>

*call CSMget (ldi=<ldi>; mesh=[mesh]; attrib=NET; --
macro=ES_NET)
*do Set = 1, <ES_NET>
*call CSMget (ldi=<ldi>; mesh=(mesh] ; iet=<$et>; --
attrib=EltPro; macro=ES_PROC [<Set>])
*call CSMget (ldi=<ldi>; mesh=[mesh] ; iet=<S$et>; --
attrib=EltTyp:; macro=ES_TYPE[<S$et>])
*enddo
*def/i i = <SS_Load_Set [<$k>]>
*def/i j = <SS_Con_Set [<Sk>]>
. Delete Existing files
*if <[Deletel> /then
Find Dataset <ldi> E.STRESS.<i>.<j>.[mesh] /seq=iseq[l]
Find Dataset <ldi> E.STRAIN.<i>.<j>.([mesh] /seg=iseq[2]
Find Dataset <1ldi> E.STRAIN_ENERGY.<i>.<j>.[mesh] /seg=iseq[3)
*do $1 = 1,3
*if <iseq<$l>]> /ne 0 > /then
*Delete <ldi> <iseq([<$1>]>
*endif
*enddo
*endif
call STRESS (STRESS = <ldi>, E.STRESS.<i>.<j>.[mesh] ; --
STRAIN = <ldi>, E*.STRAIN.<i>.<j>.[mesh]; --
STRAIN_ENERGY <ldi>, E*.STRAIN_ENERGY.<i>.<3j>.[mesh]); --

DISPLACEMENT = <ldi>, NODAL.DISPLACEMENT.<i>.<j>.[mesh]}; --
MESH = [mesh]; --
LOCATION = [location]; DIRECTION = [str_direction])
*enddo
*close
*end

5.6.9. References

5.6-1 Stanley, G.M., Hurlbut, B., Levit, ., Stehiin, B., Loden, W., and Swenson, L., COMET-AR User's
Manual, LMSC Report #°032583, 1993.

A Generic Interface Element for COMET-AR 5-21

§. Finite Element Analysis Procedures

June 22, 1994

THIS PAGE INTENTIONALLY BLANK

522

A Generic Interface Element for COMET-AR

June 22, 1994 5. Finime Element Analysis Procedures

5.7. Compute Smoothed Nodal Stresses - Procedure
Comp_Nodal_Stress

5.7.1. General Description

Procedure Comp_Nodal_Stress caiculates a set of weighted average nodal stress resultants for each
node in each substructure and creates a single NAT data object in the master model library which contains
the master model nodal stress resultants. The procedure may be calied directly or may be invoked through a
call to the Post_FE_Stress procedure (see Section 3.4).

5.7.2. Argument Summary

There are currently no arguments to this procedure. It is assumed that the macrosymbols discussed in
Section 3.3 have been defined and exist as macrosymbols visible to the procedure.

5.7.3. Argument Definitions

See previous Section.

5.7.4. Database Input/Output Summary

All database input and output requirements are imposed by the NVST processor. These requirements are
documented in Ref. 5.2-1.
5.7.5. Subordinate Processors and Procedures

The Comp_Nodal_Stress procedure has only one subordinate processor, NVST. The user is referred to
Ref. 5.2-1 for details on this processor.
5.7.6. Current Limitations

Limitations on the procedure usage are dictated by the limitations of the NVST processor. The user is
referred to Ref. 5.2-1 for details on this processor.
5.7.7. Status and Error Messages

Comp_Nodal_Stress does not print any error messages directly. All messages will be produced by the
NVST processor. The user is referred to Ref. 5.2-1 for details on this processor.

A Generic intertace Element for COMET-AR 5-23

PRECEDING PAGE BLANK NOT £t 82y

5. Finite Element Analysis Procedures

June 22, 1994

5.7.8. Examples and Usage Guidelines

The Comp_Nodal_Stress procedure may be invoked either through a call to the Post_FE_Stress pro-
cedure or through a direct call. The user need only ensure that the macrosymbols defined in the procedure

inttialize are visible to the Comp_Nodal_Stress Procedure. A listing of the procedure follows.

*procedure Comp_Nodal_Stress
*open <MM_1di> <MM_Name>

*do $i = 1,<Num_ss>

*open <SS_1di[<$i>]> <SS_Lib_Name([<$i>]>

*if < <$i> /eq 1 > /then
*def/i iupdat = 0

*else
*def/i iupdat = 1

*endif

run NVST
SET /1ib
SET /locad
stop

<88_1di[<$i>]> /olib
<SS5_Load_Set [<$i>}> /con

<SS_Con_Set [<$i>]>

*enddo
*close
*end

<MM_ldi> /update = <iupdat>

5.7.9. References

57-1 Stanley, G.M., Hurbut, B., Levit, |., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's

Manual, LMSC Report #P032583, 1993.

524 A Generic Interface Element for COMET-AR

June 22, 1994 6. Master Model Analysis Procedures

6. Master Model Analysis Procedures

6.1. Overview

This Chapter describes new COMET-AR command language procedures which control the generation
and analysis of the Master Model. The Master Mode! Processor, MSTR, takes as input the substructure and
interface element definitions (i.e., node locations, connectivities, loads, boundary conditions) and then
renumbers all of the input nodes (including pseudo-nodes and alpha-nodes) sequentially, renumbers the
elements, rewrites the element connectivities, and copies all the data required for the solution into a single
library file. The resulting master mode! therefore contains both finite elements (possibly several different
types) and interface elements. The element stiffness matrices may then be assembled using an available
assembly processor (€.g., processor ASW) and the resulting global system of equations may be solved using
an available solver (e.g., processor PVSNP). A section is dedicated to each of the master mode! analysis
procedures summarized in Table 6.1.

Tabie 6.1. Outline of Chapter 6: Master Model Analysis Procedures

Section Procedure Function
Template for user-written procedure which
2 Merge_SS generates the master model
Assembies the master model stiffness matrix
3 Assembie_Master and load vector
4 Solve_Master Solves the global system of equations

A Generic intertace Element for COMET-AR 6-1

6. Master Mode! Analysis Procedures June 22, 1994

THIS PAGE INTENTIONALLY BLANK

6-2 A Generic interface Element for COMET-AR

June 22, 1994 6. Master Model Analysis Procedures

6.2. Master Model Generation - Procedure Merge_SS

6.2.1. General Description

The finite element substructures and the interface elements are merged into a single master model
through the use of the Merge_SS procedure which calls the MSTR processor (see Section 8.2 for details on
this processor) and which is called automatically by the SS_control procedure (see Section 3.2). The proce-
dure Merge_SS may either be used as is (in which case all of the defined substructures are merged with all
of the interface elements) or it may be used as a template (so that only selected substructures are merged).
Table 6.2 is a listing of the Merge_SS procedure template.

Table 6.2. Template for User-Defined Procedure Merge_SS

*procedure Merge_SS
. Merge User-specified substructures into a single library
Run MSTR
. Define Substructures that will be merged
DEFINE SUBSTRUCTURES
*do $j=1, <Num_SS>
. Finite Element Substructures
SUBstructure <SS_List[<$j>]> e
Library = <SS_Mdi[<$p>]> . SS library numbers
Mesh = <SS_mesh(<$j>]> . SS mesh numbers
Load_set = <SS_load_set[<$j>]> . SS load set numbers
Constraint_case = <SS_con_sef{<$j>]> . SS constraint case numbers
Load_step = <SS_step{<$pp> . SS Load step numbers
=*enddo
. Interface Element Substructure
SUBstructure <<SS_List{<$j>]>+1> fie
Library = <El_ldi> . Interface Element library
Mesh = <El_mesh> . Interface Element mesh
Load_set = <El_load_set> . Interface Element load set
Constraint_case = <El_con_set> . Interface Elem. constraint case
Load_step = <El_step> . Intertace Element Load step
END_DEFINE
. Perform the Merge operation
MERGE <SS_List{1:<Num_SS>]>,<<Num_SS>+1>
File = <MM_name> . Master model library file name
Library = <MM_Idi> . Master model library number
Mesh = <MM_mesh> . Master model mesh
Load_set = <MM_load_set> . Master model load set
Constraint_case = <MM_con_set> . Master model constraint case
Load_step = <MM_step> . Master model Load step
END_MERGE
STOP
*end
A Generic Interface Element for COMET-AR 63

PRECEDING PAGE BLANK NOT FiLhico

6. Master Model Analysis Procedures June 22, 1994

6.2.2. Argument Summary :

it is recommended that required input parameters be defined using the macrosymbols defined in
procedure Inltlallze (see Section 3.3) rather than through new procedurg arguments. Users may choose to
utilize new procedure arguments however, the procedure SS_control will then have to be customized by the
user.

6.2.3. Argument Definitions

See previous Section.

6.2.4. Database Input/Output Summary

All database input and output requirements are imposed by the MSTR processor. These requirements
are documented in detail in Chapter 8.
6.2.5. Subordinate Processors and Procedures

The Merge_SS procedure has only one subordinate processor, MSTR. While there are also no
subordinate procedures in the template provided, the user may find it useful to define subordinate
procedures, especially for complex models.

6.2.6. Current Limitations

‘ Merge_SS is a user-written procedure. Limitations on the procedure usage are dictated by the limitations
of the MSTR processor. These limitations are documented in detail in Chapter 8. Limitations on the use of
interface elements in general are documented in Section 1.5.

6.2.7. Status and Error Messages

Merge_SS does not usually print any status or error messages directly (atthough the user may choose to
include such messages). Most messages will be produced by the MSTR processor; these error messages
are documented in Chapter 8.

64 A Generic imertace Element for COMET-AR

June 22, 1994

6. Master Model Analysis Procedures

6.2.8. Examples and Usage Guidelines

The Merge_SS procedure template shown in Table 6.2 has been compiled into the procedure library,
$AR_EIPRC/proclib.gal. If all existing substructures are to be merged into a single master model, no user
action is required beyond the definition of the Merge_SS_Prc macrosymbol (see Section 3.3).

6.2.8.1 Example 1: Merge all existing substructures into a single model.

The following procedure merges all existing substructures, including interface elements, into a single
master model. Al libraries associated with the substructures and the intertace elements must be opened prior
to calling this procedure. The user should refer to Chapter 8 tor details of processor MSTR input.

*procedure Merge_SS

. Merge User-specified substructures into a single library

Run MSTR
. Define Substructures that will be merged
DEFINE SUBSTRUCTURES
*do $j = 1, <Num_S5>
. Finite Element Substructures
SUBstructure <SS_List[<$j>]> /fe

Library = <8S_1di[<5i>])>

Mesh = <SS_mesh[<$i>]>

Load_set = <8S_load_set[<$i>]> .

Constraint_case = <SS_con_set [<$j>]>

Load_step = <SS_step[<$i>]>
*enddo

Interface Element Substructure
SUBstructure <<SS_List([<$j>]>+1> /ie

Library = <EI_1ldi>

Mesh = <EI_mesh>

Load_set = <EI_load_set>

Constraint_case = <EI_con_set>

Load_step = <EI_step>
END_DEFINE

. Perform the Merge operation

MERGE <SS_List[1l:<Num_SS>}>,<<Num_SS>+1> .
. Master
. Master
. Master
. Master
. Master
. Master

File = <MM_name>
Library = <MM_1di>
Mesh = <MM_mesh>
Load_set = <MM_load_set>
Constraint_case = <MM_con_set>
Load_step = <MM_step>
END_MERGE
STOP
send

. 8S library numbers
. 8S mesh numbers

8S load set numbers

Interface
Interface
Interface
Interface
Interface

. SS constraint case numbers
. 8§ load step numbers

Element library
Element mesh

Element load set
Element constraint case
Element load step

MERGE ALL SUBSTRUCTURES

model
model
model
model
model
model

library file name
library number
mesh

load set
constraint case
load step

A Generic Intertace Element for COMET-AR

6-5

6. Master Model Analysis Procedures June 22, 1994

6.2.8.2 Example 2: Merge only three selected substructures into a single model.

The following procedure merges substructures 1 and 3 and the existing interface elements into a single
master model. All libraries associated with the substructures and the interface elements must be opened prior
to calling this procedure. The user should refer to Chapter 8 for details on processor MSTR input.

*procedure Merge_SS
. Merge User-specified substructures into a single library
Run MSTR '
. Define Substructures that will be merged
DEFINE SUBSTRUCTURES
. Finite Element Substructures
SUBstructure 1 /fe

Library =1 . 8§ 1 library number

Mesh =0 . 55 1 mesh number

Load_set =1 . 85 1 load set number
Constraint_case = 1 . 8§ 1 constraint case number
Load_step =0 . 88 1 load step number
SUBstructure 3 /fe

Library = 4 . 8§ 3 library number

Mesh =0 . 8S 3 mesh number

Load_set = 2 . 85 3 load set number
Constraint_case = 2 . S8 3 constraint case number
Load_step =0 . 88 3 load step number

. Interface Element Substructure
SUBstructure 4 /ie

Library = 8 Interface Element library
Mesh =0 . Interface Element mesh
Load_set 1 Interface Element load set
Constraint_case = 1 . Interface Element constraint case
Load_step =0 . Interface Element load step
. Perform the Merge operation
MERGE 1,3,4
File = ‘master.dbc' . Master model library file name
Library 3 . Master model library number
Mesh =0 . Master model mesh
Load_set =1 . Master model load set
Constraint_case = 1 . Master model constraint case
Load_step =0 . Master model Load step
END_MERGE
STOP

*end

6.2.9. References

None.

66 A Generic Interface Element for COMET-AR

June 22, 1984 6. Maswier Model Analysis Procedures

6.3. Master Model Assembly - Procedure
Assemble_Master

6.3.1. General Description

The assembly of the global stiffness matrix and load vector are normally carried out within the solution
procedure (e.g., L_STATIC_1). Due to the introduction of the interface elements, this solution procedure can
no longer be used and the functions performed within it have been placed within different, individual
procedures. Some of these new procedures have already been discussed (e.g., Defn_FE_Freedoms). The
new procedure for performing system matrix and vector assembly is discussed in this Section.
Assemble_Master is called automatically by SS_control (see Section 3.2) using macrosymbols defined in
the Initiallze procedure (see Section 3.3).

6.3.2. Argument Summary

SS_control invokes procedure Assemble_Master with the COMET-AR =call directive, empioying the
arguments summarized in Table 6.3, which are described in detail subsequently.

Table 6.3. Procedure Assemble_Master Input Arguments

Argument Default Value Description
ASM_STIFFNESS STRUCTURE.MATL_STIFFNESS | Assembied matrix data object
CONSTRAINT_SET 1 Constraint set number
ELT_STIFFNESS E* .MATL_STIFFNESS Element matrix data objects
LDI_C 1 Computational database
LDI_E 1 Element matrix database
LDLS 1 System matrix database
LOAD_FACTOR 1.0 Load factor
LOAD_SET 1 Load set number
MESH 0 Mesh number
RHS NODAL . EXT_FORCE Applied force data object
SOLN NODAL . DISPLACEMENT Final solution data object
SPEC_DISP * SPEC_DISP Specified displacement data object
STEP 0 Load step number

A Generic inwerface Element for COMET-AR 67

6. Master Mode! Analysis Procedures June 22, 1994

6.3.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 6.3 are defined in more detail. Note
that arguments are listed in alphabetical order.

6.3.3.1 ASM_STIFFNESS Argument

Assembled Stiffness Matrix data object name. This argument specifies the first two words of the name ot
the output, assembied global stiffness matrix data object.

Argument syntax:

ASM_STIFFNESS = global_stiffness_name

where global_stiffness_name is a character string which must be a valid data object name. The SS_control
procedure (see Section 3.2) allows this argument to default. (Default value: STRUCTURE . MATL_STIFFNESS)
6.3.3.2 CONSTRAINT_SET Argument
Constraint set number. This argument identifies the constraint set number for the merged, master model.
Argument syntax:

CONSTRAINT_SET = constraint_set

where the integer constraint_set must be a valid constraint set number. The SS_control procedure (see
Section 3.2) calls Assemble_Master using the MM_con_set macrosymbo! defined in procedure Initialize
(see Section 3.3). (Default value: 1)

6.3.3.3 ELT_STIFFNESS Argument

Element Stiffness Matrix data object name. This argument specifies the first two words of the name of the
element stiffness matrices. if more than one element type is used during an analysis (with interface elements,
there is always more than one element type in the analysis), it is recommended that the default value be
used.

Argument syntax:

ELT_STIFFNESS = ¢lt_stiffness_name

where elt_stiffness_name is a character string which must be a valid data object name. The SS_control
procedure (see Section 3.2) allows this argument to default. (Default value: E* .MATL_STIFFNESS)

6-8 A Generic interface Element for COMET-AR

June 22, 1994 6. Master Mode! Analysis Procedures

6.3.3.4 LDI_C Argument

Computational database logical device index. This argument is the logical device index, or library
number, for the database containing the model data (e.g., loads, nodal ordering, etc.) for the master model.

Argument syntax:

LDi_C=/di

where the integer idi must be set to the appropriate library nunﬁer. The SS_control procedure (see Section
3.2) calls Assembile_Master using the MM_idl macrosymbol defined in procedure Initialize (see Section
3.3). (Detautt value: 1)

6.3.3.5 LDI_E Argument

Element database logical device index. This argument is the logical device index, or library number, for
the database containing the element matrices for the master model.

Argument syntax:

LDI_E = idi

where the integer /i must be set to the appropriate library number. The SS_control procedure (see Section
3.2) calls Assemble_Master using the MM_ldi macrosymbo! defined in procedure Initialize (see Section
3.3). (Defautt value: 1)

6.3.3.6 LDI_S Argument

System database logical device index. This argument is the logical device index, or library number, for
the database containing the system global stitfness matrix for the master model.

Argument syntax:

LDI_S=/i

where the integer idi must be set to the appropriate library number. The SS_control procedure (see Section
3.2) calls Assembie_Master using the MM_IdI macrosymbol defined in procedure Initialize (see Section
3.3). (Default value: 1)

6.3.3.7 LOAD_FACTOR Argument
Load factor. This argument is the load factor for the master model analysis.
Argument syntax:

LOAD_FACTOR = factor

where factor is a floating point number. The SS_control procedure (see Section 3.2) allows this argument to
default. (Default value: 1.0)

A Generic Interface Element for COMET-AR 69

6. Master Mode! Analysis Procedures June 22, 19984

6.3.3.8 LOAD_SET Argument
Load set number. This argument identifies the load set number for the master model.
Argument syntax:

LOAD_SET = load_set

where the integer /oad_set must be a valid load set number (i.e., it must exist in the idi_c data library). The
SS_control procedure (see Section 3.2) calis Assemble_Master using the MM_load_set macrosymbol
defined in procedure Initialize (see Section 3.3). (Default value: 1)

6.3.3.9 MESH Argument
Mesh identification number. This argument identifies the mesh to be processed for the master model.
Argument syntax:

MESH= mesh

where the integer mesh must be set to a valid mesh number. The SS_control procedure (see Section 3.2)
calls Assemble_Master using the MM_mesh macrosymbol defined in procedure inltlalize (see Section 3.3).
(Defauit value: 0)

6.3.3.10 RHS Argument

Right-Hand Side vector data object name. This argument specifies the first two words of the name of the
output, assembled global right-hand side vector data object.

Argument syntax:

RHS = rhs_object_name

where rhs_object_name is a character string and must be a valid data object name. The SS_control
procedure (see Section 3.2) allows this argument to default. (Default value: NODAL . EXT_FORCE)

6.3.3.11 SOLN Argument

Solution vector data object name. This argument specifies the first two words of the name of the global
solution vector data object.

Argument syntax:

SOLN = soin_object_name

where soin_object name is a character string and must be a valid data object name. The SS_control
procedure (see Section 3.2) allows this argument to default. (Default value: NODAL . DISPLACEMENT)

6-10 A Generic interface Element for COMET-AR

June 22, 1884 6. Master Model Analysis Procedures

6.3.3.12 SPEC_DISP Argument

Specified Displacement data object name. This argument specifies the first two words of the name of the
global specified displacement data object.

Argument syntax:

SPEC_DISP = spec_disp_object_name

where spec_disp_object name is a character string and must be set to a valid data object name. The
SS_control procedure (see Section 3.2) allows this argument to default. (Default value:* . SPEC_DISP)

6.3.3.13 STEP Argument

Load step identification number. This argument identifies the load step (for nonlinear analysis) to be
processed for the master model. ‘

Argument syntax:

STEP = step

where the integer step must be set to the appropriate load step number. The SS_control procedure (see
Section 3.2) calls Assemble_Master using the MM_step macrosymbol defined in procedure initialize (see
Section 3.3). (Default value: 0)
6.3.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the ASM processor. These
dataset requirements are documented in detail in the COMET-AR User’s Manual (Ref. 6.3-1).
6.3.5. Subordinate Processors and Procedures

Assemble_Master has only one subordinate processor, ASM, and no subordinate procedures. At
present, ASM is the only assembler recognized.
6.3.6. Current Limitations

Limitations on the procedure usage are dictated by the limitations of the ASM processor. These
limitations are documented in the COMET-AR User's Manual (Ref. 6.3-1). Limitations on the analysis in
general are documented in Section 1.5.

6.3.7. Status and Error Messages

Assemble_Master will not print any status or eror messages directly. All messages will be produced by
the ASM processor. The user should refer to the COMET-AR User's Manual (Ret. 6.3-1) for specific emor
messages produced by this processor.

A Generic inweriace Element for COMET-AR 6-11

6. Master Mode! Analysis Procedures

June 22, 1994

6.3.8. Examples and Usage Guidelines

The Assemble_Master procedure is called automatically by the SS_control procedure using the
macrosymbois defined by the user through the Initialize procedure. A Iis}ing of Assemble_Master follows.

sprocedure Assemble_Master (-

E* .MATL_STIFFNESS
STRUCTURE .MATL_STIFFNESS

elt_stiffness
asm_stiffness

1di_c =1 ; -
1di_e =1 ; --
1di_s =1 g ; --
rhs = NODAL.EXT_FORCE ; --
soln = NODAL.DISPLACEMENT ; ==
constraint_set =1 ; -
load_set =1 3 --
load_factor = 1.0 : ==
spec_disp = *,SPEC_DISP ; ==
mesh =0 ; -~
step =0)
. Assemble Element Stiffness Matrix into System Matrix

run ASM
MODEL [1di_c] CSM.SUMMARY...[mesh]
INCLUDE [1di_e], [elt_stiffness] DEFINITION = [1di_c]
INCLUDE [1di_c] NODAL.DOF..{[constraint_set].[mesh]
OUTPUT ([1di_s], [asm_stiffness] FORMAT=Transpose
SHOW/I1,0
ASSEMBLE
STOP
. Check for Spec. Displacement and Right-hand Side Data Objects
#find [{1di_c], (spec_disp].[load_set]..[mesh] /seqg=ids_AMU
sfind [1di_c], [rhs].[load_set]..[mesh] /seg=ids_RHS
. Assemble Right-hand Side Vector
run ASM
MODEL [1di_c] CSM.SUMMARY... [mesh]
INCLUDE [1di_c] NODAL.DOF..{[constraint_set]. [mesh]
*if < <ids_AMU> /gt 0 > /then
INCLUDE [1ldi_e], [elt_stiffness] DEFINITION = [1di_c]

sendif
*if <« <ids_RHS> /gt 0 > /then

INCLUDE [ldi_c], [rhs].[locad_set]..[mesh] CONTENTS = FORC_N
sendif

ASSEMBLE/VECTOR
STOP
send

INCLUDE [ldi_c], (spec_displ.[load_set])..[mesh] CONTENTS = DISP_N

OUTPUT [1ldi_s] SYSTEM.VECTOR.[load_set]..[mesh] FORMAT = DOFVEC

6.3.9. References

6.3-1 Staniey, G.M., Hurbbut, B., Levit, |., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User’s

Manual, LMSC Report #P032583, 1983.

612 A Generic interface Element for COMET-AR

June 22, 1994 6. Master Model Analysis Procedures

6.4. Master Model Solution - Procedure Solve Master

6.4.1. General Description

in COMET-AR, the solution of the global system of equations is normally carried out within the solution
procedure (e.g., L_STATIC_1). Due to the introduction of the interface elements, this usual solution
procedure can no longer be used and the functions performed within it have been placed within different,
individual procedures. Some of these additional procedures have already been discussed (e.g.
Defn_FE_Freedoms). The new procedure for performing the solution of the equation system is discussed in
this Section.

Procedure Solve_Master obtains the solution to the giobal system of equations. Since constrained
(either through multi-point or single-point constraints) degrees-of-freedom are not assembled, a call to COP,
the constraint processor (Ref. 6.3-1), is required. This call to processor COP expands the solved system to
include constraints thereby providing the user with results data objects which may be viewed and post-
processed. SS_control (see Section 3.2) automatically calls Solve_Master using macrosymbols defined in
procedure Initialize (see Section 3.3).

6.4.2. Argument Summary

SS_control invokes procedure Solve_Master with the COMET-AR =call directive, employing the
arguments summarized in Table 6.3, which are described in detail subsequently.

Table 6.4. Procedure Solve_Master Input Arguments

Argument Default Value Description
CONSTRAINT_SET 1 Constraint set number
LDI_C 1 Computational database
LDI_S 1 System matrix database
LOAD_FACTOR 1.0 Load factor
LOAD_SET 1 Load set number
MESH 0 Mesh number
SOLN NODAL . DISPLACEMENT Final solution data object
SPEC_DISP * .SPEC_DISP Specified displacement data object
STEP 0 Load step number

A Generic Intartace Element for COMET-AR

€-13

6. Master Model Analysis Procedures June 22, 1984

6.4.3. Argument Definitions

In this subsection, the procedure arguments summarized in Table 6.3 are defined in more detail. Note
that arguments are listed in alphabetical order.

6.4.3.1 CONSTRAINT_SET Argument

Constraint set number. This argument identifies the constraint set number for the global, merged, master
model.

Argument syntax:

CONSTRAINT_SET = constraint_set

where the integer constraint_set must be a valid constraint set number. The SS_control procedure (see
Section 3.2) calls Solve_Master using the MM_con_set macrosymbol defined in procedure inltialize (see
Section 3.3). (Default value: 1)

6.4.3.2 LDI_C Argument

Computational database logical device index. This argument is the logical device index, or library
number, for the database containing the model data (e.g., loads, nodal ordering, etc.) for the master model.

Argument syntax:

LDI_C= idi

where the integer idi must be set to the appropriate library number. The SS_control procedure (see Section
3.2) calls Solve_Master using the MM_idi macrosymbol defined in procedure Initialize (see Section 3.3).
(Default value: 1)

6.4.3.3 LDI_S Argument

System database logical device index. This argument is the logical device index, or library number, for
the database containing the system global stiffness matrix for the master model.

Argument syntax:

LDL_S = ki

where the integer idi must be set to the appropriate library number. The SS_control procedure (see Section
3.2) calls Solve_Master using the MM_idl macrosymbo! defined in procedure Initialize (see Section 3.3).
(Defautt value: 1)

614 . A Generic Interface Element for COMET-AR

June 22, 1994 6. Master Modei Analysis Procedures

6.4.3.4 LOAD_FACTOR Argument
Load factor. This argument is the load factor (for nonlinear analysis) for the master mode! analysis.
Argument syntax:

LOAD_FACTOR = factor

where factor is a floating point number. The SS_control procedure (see Section 3.2) allows this argument to
default. (Detautt value: 1.0)
6.4.3.5 LOAD_SET Argument

Load set number. This argument identifies the load set number for the master model.
Argument syntax:

LOAD_SET = load_set

where the integer Joad_set must be a valid load set number (i.e., it must exist in the /di_c data library). The
SS_control procedure (see Section 3.2) calls Solve_Master using the MM_load_set macrosymbol defined
in procedure Initialize (see Section 3.3). (Default value: 1)

6.4.3.6 MESH Argument
Mesh identification number. This argument identifies the mesh to be processed for the master model.
Argument syntax:

MESH = mesh

where the integer mesh must be set to a valid mesh number. The SS_control procedure (see Section 3.2)
calls Solve_Master using the MM_mesh macrosymbol defined in procedure Initialize (see Section 3.3).
({Detault value: 0)

6.4.3.7 SOLN Argument

Solution vector data object name. This argument specifies the first two words of the name of the giobal
solution vector data object.

Argument syntax:

SOLN = soln_object_name

where soln_object_name is a character string and must be set to a valid data object name. The SS_control
procedure (see Section 3.2) allows this argument to default. {Def= it value: NODAL . DISPLACEMENT)

A Generic inerface Element for COMET-AR 6-15

6. Master Modei Analysis Procedures June 22, 1994

6.4.3.8 SPEC_DISP Argument

Specified Displacement data object name. This argument specifies the first two words of the name of the
global specified displacement data object.

Argument syntax:

SPEC_DISP = spac_disp_object_name

where spec_disp_object name is a character string and must be set to a valid data object name. The
SS_control procedure (see Section 3.2) allows this argument to default. (Default value:* . SPEC_DISP)

6.4.3.9 STEP Argument

Load step identification number. This argument identifies the load step (for nonlinear analysis) to be
processed for the master model.

Argument syntax:

STEP = stsp

where the integer step must be set to the appropriate load step number. The SS_control procedure (see
Section 3.2) calis Solve_Master using the MM_step macrosymbol defined in procedure Initlalize (see
Section 3.3). (Default value: 0)

6.4.4. Database Input/Output Summary

All database input and output requirements for this procedure are imposed by the PVSNP and COP
processors. These dataset requirements are documented in detail in the COMET-AR User’s Manual! (Ref.
6.3-1).

6.4.5. Subordinate Processors and Procedures

Solve_Master has two subordinate processors, PVSNP and COP, and calls no procedures. The current
interface element requires a solver capable of solving a non-positive-definite system of equations. The only
solver so capabie is, currently, PVSNP. Processor COP is executed to expand the solution system vector into
a full nodal vector table so that the results may be post-processed.

6.4.6. Current Limitations

Limitations on the procedure usage are dictated by the limitations of the PVSNP and COP processors.
These limitations are documented in the COMET-AR User's Manual (Ref. 6.3-1). Limitations on the analysis
in general are documented in Section 1.5.

6.4.7. Status and Error Messages

Solve_Master does not print any status or error messages directly. All messages are produced by the
PVSNP or COP processors. The user should refer to the COMET-AR User's Manual (Ref. 6.3-1) for specific
error massages produced by these processors.

6-16 A Generic imertace Element for COMET-AR

June 22, 1994 6. Master Model Analysis Procedures

6.4.8. Examples and Usage Guidelines

The Solve_Master procedure is called automatically by the SS_control procedure using the appropriate

macrosymbols as defined by the user. A listing of the procedure follows. -

*procedure Solve_Master (

1di_c =1 ; --
ldi_s =1 ; --
spec_disp = * SPEC_DISP ; --
soln = NODAL.DISPLACEMENT ; --
constraint_set =1 5 --
load_set =1 ; --
load_factor =1 ; ==
mesh =0 ; ==
step =0)

. Check for Spec. Displacement and Right-hand Side Data Objects
*find [1di_s], [spec_disp].[load_set]..[mesh] /seg=ids_AMU
*find [1di_s], SYSTEM.VECTOR.[load_set].0.[mesh] /seg=ids_RHS
*if <<ids_RHS> /le 0> /then

*remark *** No right-hand side vector in library [1di_s]

*stop
sendif
. Solve the system of equations with processor pvsnp
run PVSNP
SET LDiC = [1ldi_c)
SET Ldis = [1ldi_s])
SET MESH = [mesh])
SET STEP = [step]
SET IJUMP = 9
FACTOR
STOP
. Reinstate Deleted And Specified Freedoms
run COP

MODEL [1di_c] CSM.SUMMARY...[mesh]
*if < <ids_AMU> /gt 0 > /then
*def/a am_ph='VALUES=(1di_s], [spec_disp] [load_factor]'’
*else
*def/a am_ph=' '
sendif
EXPAND/DOFVEC
INPUT =[1di_s],SYSTEM.VECTOR. [load_set]..[mesh] --

DOFDAT=[(1di_c] [constraint_set] [mesh) <am_phrase>
STOP
*end

OUTPUT=[1di_s], [soln).{load_set].[constraint_set] <am_ph> --

6.4.9. References

6.4-1 Stanley, G.M., Hurlbut, B, Levit, I., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User's

Manual, LMSC Report #P032583, 1993.

A Generic Interface Element for COMET-AR

6-17

6. Master Mode! Analysis Procedures June 22, 1994

THIS PAGE INTENTIONALLY BLANK

6-18 A Generic Immertace Element for COMET-AR

June 22, 1984 IV. Processors

Part IV
PROCESSORS

A Generic Interface Eiement for COMET-AR V-1

PRECEDING PAGE BLANK NOT FILMED

V. Processors June 22, 1994

THIS PAGE INTENTIONALLY BLANK

v-2 A Generic Interface Element for COMET-AR

June 22, 1994 7. Generic interface Element Processor

7. Interface Element Processors

7.1. Overview

In this Chapter, the Generic Interface Element Processor as well as a specific interface element proces-
sor are described. The Generic Interface Element Processor is much like the Generic Element Processor, or
GEP (Ref. 7.2-1), in that it is a standard processor template (also called a “shell”) from which many individual
interface element processors may be developed. All of the individual processors share a common user inter-
face and a common database interface through the Generic Interface Element Processor. This common shell
is named the El processor; individual element processors are named El* processors (e.g., EN, EI2). Each El
processor performs all the functions associated with elements of a particular type (e.g., defines elements,
forms stiffness). '

The Chapter is organized as listed in Table 7.1
Table 7.1. Outline of Chapter 7: Intertace Element Processors

Section Processor Function
2 El Generic Interface Element Processor
3 En Hybrid Variational Interface Element Processor
A Generic Interface Element for COMET-AR 7-1

PRECEDING PAGE BLANK NOT FILMED

7. Generic intertace Element Processor June 22, 1994

THIS PAGE INTENTIONALLY BLANK

7-2 A Generic Interface Element for COMET-AR

June 22, 1894 7. Generic Interface Element Processor

7.2. Processor El (Generic Interface Element Processor)

7.2.1. General Description

The generic interface element processor, or El (for Element, Interface) provides a standard template
which may be used to implement different interface elements, all of which may then coexist within COMET-AR
as independent software modules. Processor El provides a common user interface and a common database
interface for each of these potentially independent modules. This processor was modeled after the Generic
Element Processor for structural elements (Ref. 7.2-1), ES, which forms the foundation for all finite element
implementation within COMET-AR. Indeed, the El processor looks very much like the ES processor, using
many of the same commands and similar underlying software. The El processor is however, significantly dif-
ferent from the ES processor; many new data objects are required to define the interface element and the
user input required for the interface element definition is radically different than that required for finite element
definition.

This Section describes the interface element reference frames, the standard user interface, and the data-
base interface employed by the El processor and therefore, by all processors which use the El processor

template.

7.2.2. Interface Element Reference Frames

The El processor shell creates the transformation matrices required to define two reference frames - the
edge frame (attached to the substructure edges) and the interface frame (attached to pseudo-nodes) - as
shown in Figure 7.1. The edge frame is the computational frame for the alpha-nodes and the interface frame
is the computational frame for the pseudo-nodes. These frames need not be coincident with any of the finite
element node computational frames therefore the interface element matrices must be transformed prior to
assembly in the global system of equations.

Finite element Nodes

Subscripts:
m: materia! frame

Yg ¢: nodal computational frame
e: finite element frame
g: global frame

Xg s: interface frame
d: edge frame

Figure 7.1. intertace Element Reference Frames

A Generic Intertace Element for COMET-AR 7-3

PRECEDING PAGE BLANK NOT FILMED

7. Generic interface Element Processor June 22, 1984

Creation of the transformation matrices for these reference frames is a two step process. First, the edge
and interface frames are defined by creating tangent and normal vectors along the edge and interface respec-
tively, these vectors are then saved in the database. This first step is completed during the interface element
definition. Second, the vectors are read from the database and transformation matrices, which transform
edge and intertace to a global frame, are formed based on the vectors. This second step is accomplished dur-
ing the formation of the interface element stiffness matrix.

The procedure employed by the shell for defining the edge and interface frames (denoted by the sub-
scripts “d” and “s” respectively) is as follows:

1. Calculate the average nodal normals, ny, for the finite element nodes along the interface for all substruc-
tures. Note that in general, each finite element node may be connected to more than one finite element
along the interface. A normal is defined at each node for each finite element in the global frame. The aver-
age is cakulated based on these elemental normals. Only the normals from elements along an interface
are considered at a given node.

2. Using a piecewise linear interpolation between the average nodal normals along the finest (discretized
with the most nodes) substructure, calculate a normal, n, for each pseudo-node.

3. Calculate tangents, t'y (for finite element nodes) and t'; (for pseudo-nodes), by ditferentiating along the
interface element path. These are interim values which are discarded once the frames are created.

4. Calculate the transverse tangents b’y = Ng x ty and b’y = g x t's. Normalize b’ in both frames to recover
by and b,.

§. Calculate ty = by x ng and t; = by x .

6. Repeat steps 3-5 for each substructure, performing only edge frame caiculations.

7. Locate the image of each pseudo-node along the edge of each substructure and lineary interpolate a
normal and two tangents for each image in each edge frame (i.e., form t5, b, nf).

Once the various normals and tangents are created and saved, transformation matrices are formed as

needed. The shell creates three sets transformation matrices: T, Tyq:and T:g which are defined by

T pT
. ta t
= |.7. _ . = |.pT .
o=l Teslli s el o2
T T T
n, Ny Ny

These matrices are then passed down through the El processor to the kemel along with the computational-to-
global transformations, found in the NTT data object NODAL.TRANSFORMATION...mesh, for the finite element
nodes of each substructure. The interface element developer is then responsible for applying the
transformations as necessary to the matrix generated by the kemel so that the pseudo-node and alpha-node
degrees-of-freedom (if any) are in the interface and edge frames respectively.

7.2.3. Automatic Drilling Degree-of-Freedom-Suppression

in specific applications, it may be necessary to constrain the so-called drilling degree-of-freedom. The
suppression of this degree-of-freedom along the interface is only required when the drilling freedom is sup-
pressed in all connected substructures and when the geometry of the structure is such that there is a degree-
of-freedom in the connected structure for which there is no stiffness. For example, if a curved panel with a

7-4 A Generic imerface Element for COMET-AR

June 22, 1994 7. Generic Interface Element Processor

central hole is modeled with an ES1/EX97 element (Ref. 7.2-3) as two substructures so that there is a local
model in the neighborhood of a central hole and a global model away from the hole, the drilling degree-of-
treedom for both pseudo-nodes and alpha-nodes along each interface element would need to be suppressed.
if, on the other hand, one were using an interface element to attach a blade stiffener to a flat panel, no drilling
freedom would need to be suppressed for the pseudo-nodes since along this intersection, all six degrees-of-
freedom have some stiffness associated with them , with contributions coming either from the skin or from the
stiffiener. The alpha-nodes however, represent tractions along a substructure thus their drilling freedoms do
need to be suppressed.

In this second example, the user would be required to manually constrain the alpha-node drilling free-
doms. The first example however, is handied intemally by the El processor shell. That is, when two substruc-
tures connect at an interface element and neither substructure has drilling stiffness and both use the same
edge and computational frames, the El processor automatically suppresses the drilling freedom (always
degree-of-freedom 6) for both pseudo- and alpha-nodes. This condition is detected by looking at an average
normal for each pseudo-node (computed by taking the average of the normals of each incoming substructure
at each pseudo-node) and comparing the substructure normals to this average. If the difference between the
average and all incoming substructure normals is less than 1 degree for all pseudo-nodes along the interface
element, then the drilling freedom is suppressed by the El processor at all pseudo- and alpha-nodes. If this
test is not passed, then the drilling freedom is not suppressed; if the user wishes to manually suppress the
drilling freedom, the CONSTRAINT subcommands of the DEFINE ELEMENTS command will permit that sup-
pression.

7.2.4. Command Classes

The generic interface element processor commands are partitioned into three classes. A summary of
these classes is given in Table 7 .4.

Table 7.2. Generic Interface Eloment (El) Command Classes

Command Class Function
RESET Process element reset parameters. RESET is issued in conjunction with
DEFINE and FORM.
DEFINE Process element definition commands. Used during pre-processing, this

class includes such information as the definition of element connectivity and
the definition of active degrees of freedom.

FORM Formation of element matrices.

Each of these classes is discussed in detail in subsequent Sections.

A Generic intertace Element for COMET-AR 7-5

7. Generic Interface Element Processor June 22, 1994

7.2.5. The El Processor RESET Commands

The RESET commands are used to define certain parameters which are meaningtful to each of the other
commands (i.e., to the DEFINE and FORM commands). Once a RESET command has been issued, it
remains valid for each interface element defined or formed within the current execution. The command may
be issued as many times as necessary within a given execution. There are several of these RESET
commands; they are summarized in Table 7.3 and discussed in detail in subsequent sections.

Table 7.3. Summary of RESET Commands

Keyword Default Meaning
RESET LDI 1 Logical device index for output.
RESET MESH 0 Mesh number for output.
RESET STEP 0 Load step number for output.
RESET LOAD_SET 1 Load set number for output.
RESET CONSTRAINT_CASE 1 Constraint case number for output.
RESET ZERO 1.E-5 Zero value.

7.2.5.1 The RESET LDI Command

Logical Device Index for the interface elements.
Command Syntax:

RESET LDI = /di

where the integer Idi signifies the output logical device index. When used with the DEFINE ELEMENTS
command, /di must be attached to a new, empty but open data library. When used with the FORM command
class, this idi must be open and contain the interface element definitions. (Default: 1)

7.2.5.2 The RESET MESH Command

Mesh Number. When used with the DEFINE ELEMENTS command, this command assigns the mesh
number to all of the interface elements defined. When used with the FORM command class, the command is
used to identify the interface elements to be processed.

Command Syntax:

RESET MESH = mesh

where the integer mesh identifies the mesh number. (Defautt: 0)

7€ A Generic iImerface Element for COMET-AR

June 22, 1994 7. Generic Interface Element Processor

7.2.5.3 The RESET STEP Command

Load Step Number. When used with the DEFINE ELEMENTS command, this command assigns the step
number to all of the interface elements defined. When used with the FORM command class, the command is
used to identity the interface elements to be processed. h

Command Syntax:

RESET STEP = step

where the integer step identifies the load step number. (Default: 0)

7.2.5.4 The RESET LOAD_SET Command

Load Set Number. When used with the DEFINE ELEMENTS command, this command assigns the load
set number to all of the interface elements defined. When used with the FORM command class, the com-
mand is used to identify the intertace elements to be processed.

Command Syntax:

RESET LOAD_SET = load_set

where the integer foad_set identifies the load set number. (Default: 1)

7.2.5.5 The RESET CONSTRAINT_CASE Command

Constraint Case Number. When used with the DEFINE ELEMENTS command, this command assigns
the constraint case number to all of the interface elements defined. When used with the FORM command
class, the command is used to identify the interface elements to be processed.

Command Syntax:

RESET CONSTRAINT_CASE = constraint_case

where the integer constraint_case identifies the constraint case number. (Default: 1)

7.2.5.6 The RESET ZERO Command

Zero value. Zero value is the tolerance used in determining whether or not a node lies along the current
interface element.

Command Syntax:

RESET ZERO = zero

where zero is a floating point number. (Default:1 . E-5)

A Generic Interiace Element for COMET-AR 7-7

7. Generic Imerface Element Processor June 22, 1994

7.2.6. The El Processor DEFINE Commands

A summary of the DEFINE commands accessible via the generic interface element processor is given in
Table 7.4. Complete descriptions of these commands are provided in subsequent Sections.

Table 7.4. Generic interface Element (El) Command Classes

Command Class Function

DEFINE ELEMENTS | Define element connectivity; includes nodal connectivity for each substructure
attached to a given interface element along with interpolation parameters, scale
factors, and other element parameters.

DEFINE FREEDOMS | Define valid interface element nodal degrees of freedom for automatic freedom
suppression.

7.2.6.1 The DEFINE ELEMENTS Command
The DEFINE ELEMENTS command has several subcommands. The command syntax is as follows:

DEFINE ELEMENTS
ELEMENT i /CURVED /DSPLINE={1,2,3} /P_NODES=np /SCALE=scalef
CONSTRAINTS
ZERO {d1,d2,d3 theta1,theta2 theta3}
NONZERO
di = value1

theta3 = valueb
MPC ddof nind a.
idof B4

idof B pind
END_CONSTRAINTS
SS k A Di=sidi {/FE /BE /RR /MESH=mesh /CONS=icon}
NODES = n1, n2,... ”GSPLINE={1,2,3}
CONSTRAINTS

END_CONSTRAINTS

SSm ADlmskdi {/FE /BE /RR /MESH=mesh /ICONSeicon}
COORDINATES = X1,X;, ... X, /GSPLINE={1,2,3}
CONSTRAINTS

END_CONSTRAINTS
SS p ADl=skdi{/FE /BE /RR /MESH=mesh /CONSaicon}
END_NODES = i1,i2.... GSPLINE={1,2,3} -
/FILTERx=Xy,Xp /FILTERywy,,y, /FILTERZ=2,,2; /FILTERN=NT,M2
CONSTRAINTS

END_CONSTRAINTS
END_DEFINE

78 A Generic Imerface Element for COMET-AR

June 22, 1994 7. Generic Intertace Element Processor

Each of the subcommands must be given in the order they are listed in the example. Each interface ele-
ment is defined by specifying the finite element nodes along each substructure to which it is attached. In this
syntax example, three options for defining these nodes are listed: NODES, COORDINATES, and
END_NODES. The three options are mutually exclusive. That is, along a particular substructure for a given
interface element, either NODES, COORDINATES, or END_NODES may be specified. Nodes along addi-
tional substructures need not necessarily be defined using the same option, but if options are mixed within an
interface element extreme care should be taken. Each of these options is described in detail in subsequent
sections.

Constraints may be applied at both the substructure and the interface element level. Constraints applied
fo the interface element (the first CONSTRAINT subcommand in the example) are applied to the pseudo-
nodes. Constraints applied at the substructure level (the remaining CONSTRAINT subcommands in the
example) are applied to the alpha-nodes. The general syntax for the constraints mimics the syntax of the
COP constraint processor of COMET-AR (Ref. 7.2-2).

While there are default values for all of the qualifiers used in the example syntax (and they are therefore
optional), the subcommands are required input to the DEFINE ELEMENTS command. Valid subcommands
and their associated optional qualifiers are described in subsequent sections.

7.2.6.1.1 The ELEMENT Subcommand

The ELEMENT subcommand signifies that a new element definition is beginning. Elements should be
numbered sequentially (to minimize database storage requirements) although there is no absolute require-
ment that they be so numbered.

Subcommand syntax:

ELEMENT ;i {/CURVED /DSPLINE={1,2,3} /P_NODES=np /SCALE=scale

where i is an integer identifying the interface element number and the optional qualifiers are described in the
following subsections.

2.2.6.1.1.1 The CURVED Qualifier

This qualifier is required if the interface is to be represented geometrically as a curve. if the qualfier is not
present, the geometry of the interface will be assumed to be piecewise linear. if the qualifier is present, the
geometry of the interface will be assumed to be a curve and will be interpolated using the function defined by

the GSPLINE qualifier (see Sections 7.2.6.1.4 through 7.2.6.1.6 for a description of this qualifier) for each
attached substructure.

PLI lifier
This qualifier optionally sets the level of interpolation for the displacements along the interface. Permissi-

bie values are 1,2, or 3 denoting piecewise linear, and quadratic, or cubic spline functions (respectively) for
the displacement interpolating functions. (Default: /DSPLINE=1)

226113 The P_NODES Qualifier

This optional qualifier specifies the number of evenly-spaced pseudo-nodes which are to be placed along
the interface element. If the number specified by the user is outside the permissible range for this element
configuration, the number of pseudo-nodes will be automatically reset to an appropriate value. if the user

A Generic intertace Element for COMET-AR 79

7. Generic interface Element Processor June 22, 1994

specifies no value, then the interface element will define automatically an appropriate number of pseudo-
nodes. .

2.26.1.14 The SCALE Qualifier
The SCALE qualifier sets a scale factor used to ensure that the assembled global stiffness matrix will not
be too ill-conditioned. The value of scale should be set to within two orders of magnitude of Ex (element vol-

ume), where the element volume is from the largest finite element along the interface and E, is the corre-
sponding longitudinal Young's modulus. (Default value: /SCALE=1.E6)

7.2.6.1.2 The CONSTRAINT Subcommand

The CONSTRAINT subcommand, when issued immediately after an ELEMENT subcommand, is used to
define constraints on the pseudo-nodes. When issued after a SUBSTRUCTURE subcommand or between
SUBSTRUCTURE subcommands, it is used to define constraints on the alpha-nodes. in both cases the syn-
tax used for constraint definition is the same.

Subcommand syntax:

CONSTRAINTS
ZERO {d1, d2, d3, thetal, theta2, theta3}
NONZERO
di =d,
a2 =d,
=0
thetal = 6,
theta2 = 6
theta3 = 6,
MPC ddof nind o
idofy B,
idof; By

I00fning Boind
END_CONSTRAINTS

where the d; are prescribed displacements; the 6; are prescribed rotations; ddof is the dependent degree-of-
freedom for the multipoint constraint {and may be: d1, d2, d3, thetat, theta2, or theta3); nind is the number of
independent degrees-of-freedom that define the multipoint constraint for ddof. a is a floating point constant
added to the multipoint constraint equation; the idof; are the independent freedoms upon which ddof depends
(and may be: d1, d2, d3, theta1, theta2, or theta3); and the p; are the coefficients of the idof;in the multipoint
constraint equation.

The constraints defined using this subcommand are applied to all pseudo-nodes (if issued immediately
following the ELEMENT subcommand) or all alpha-nodes (if issued after a SUBSTRUCTURE, or SS, sub-
command) on the interface. Therefore no node numbers are specified. The syntax is very similar to, but not
identical to, the syntax used in the COP processor of COMET-AR (Ref. 7.2-2).

7-10 A Generic Interface Element for COMET-AR

June 22, 1984 7. Generic Interface Element Processor

The phrase “multipoint constraint” (or “MPC") is, in this context, not completely accurate as it is used to
define relationships among the degrees-of-freedom associated with each pseudo-node or alpha-node rather
than to define relationships among degrees-of-freedom associated with several nodes (or points). Put
another way, the MPC defined in this subcommand will relate two or more degrees-of-freedom at a pseudo-
node or alpha-node to one dependent degree-of-freedom at the same pséudo-node or alpha-node and it will
establish the same relationship at each pseudo-node or alpha-node. Thus, the MPC connects one degree-of-
freedom at a point to other degrees-of-freedom at the same point for each point along the interface. The spec-
ification of MPC's on the interface will be needed when constraints are defined on the substructures along the
interface and the finite element nodal computational frames do not coincide with the edge or interface frames
(the computational frames for the alpha-nodes and the pseudo-nodes respectively).

7.2.6.1.3 The SS Subcommand

The SS subcommand identifies the substructures connected to the curmrent interface element. The com-
mand may also be issued as SUBS k or SUBSTRUCTURE k. The number k assigned here will be used
throughout the analysis to identify the substructure.

Subcommand Syntax:

SS k/LDi=sidi {/FE /BE /RR MESH=mesh /CONS=icon}
or
SUBS k/LDI=sldi {/FE /BE /RR /MESH=mesh /CONS=icon}
or
SUBSTRUCTURE k /LDI=sldi {/FE /BE /RR /MESH=mesh /CONS=icon}

228131 The LDI Qualifier
The LDI qualifier identifies the logical device index of the library containing the model definition data for

this substructure. The LDI specified here must exist and be open. More than one substructure may exist in a
single library. (Default value:/LDI=1)

726.1.32 The FE. BE. AR Qualfi

This set of qualifiers identifies the form of the idealization of the substructure. /FE identifies a finite ele-
ment substructure, /BE identifies a boundary element substructure, and /RR identifies a Rayleigh-Ritz sub-
structure. Currently, only the /FE qualifier can be used; COMET-AR has no current capability for boundary
element or Rayleigh-Ritz substructures. This set of qualifiers is a mutually exclusive set (i.e., a substructure
can have no more than one of these qualifiers). (Default value: /FE)

2.2.6.1.33 The MESH Qualifier

The optional MESH qualifier identifies the mesh number of the substructure mode! data to be used in
defining this interface element. (Default value: /MESH=0)
7.2.6.1.3.4 The CONS Qualii

The optional CONS qualifier identifies the constraint set number of the substructure mode! data to be
used in defining this interface element. (Default value: /CONS=1)

A Generic Inwertace Element for COMET-AR 7-1

7. Generic Interface Element Processor June 22, 1994

7.2.6.1.4 The NODES Subcommand

The NODES, COORDINATES, and END_NODES subcommands are mutually exclusive. That is, if
NODES are specified for a given substructure, then COORDINATES and END_NODES may not be (and vice
versa). if NODES are given, then the interface geometry will pass through the listed m nodes. If the command
is issued multiple times (i.e., once for each substructure), all the nodes listed will be used to define the geom-
etry of the interface.

Subcommand Syntax:

NODES = ny, A, ... Ny /GSPLINE={1,2,3}

where ny, n,, and n,, are integer finite element node numbers. (Default value: None)

1.26.1.4.1 The GSPLINE Qualifier

The GSPLINE qualifier sets the order of interpolation to be used for the representation ot the geometry of
the substructure along the interface. When GSPLINE is set to 1,2, or 3, then piecewise linear, or quadratic or
cubic spline functions (respectively) will be used to represent the geometry of the intertace. This qualifier is
required only once per interface element; if it is specified more than once, then only the last vaiue will be
retained. If the /CURVED qualifier has not been set on the ELEMENT command line, then GSPLINE will be
set to 1 regardiess of the value specified using the GSPLINE qualfier. (Default: /GSPLINE=1)

7.2.6.1.5 The COORDINATES Subcommand

The COORDINATES subcommand defines the coordinates of p points, not necessarily nodes, to be used
to define the geometry of the interface element. The COORDINATES, NODES, and END_NODES subcom-
mands are mutually exclusive. That is, f COORDINATES are specified for a given substructure, then NODES
and END_NODES may not be specified (and vice versa). If COORDINATES are given, then the interface
geometry will pass through the listed p points. If the command is issued muttiple times (i.e., for each substruc-
ture), all the points listed will be used to define the geometry of the interface.

Subcommand Syntax:

COORDINATES = X1,X, ... Xo /GSPLINE={1,2,3} ~
/F“.TERX:X,,XZ/F'LTERYS:}’,,YZ/FlLTERZSZy,Zz -
[FILTERN=N4,N,

where X, X, and x, are the coordinates of points (which need not be nodes); x; y; z; are coordinates; and n;
are node numbers. Curmrently, p must be 2 and it is assumed that the two points specified by the user are the
end points of a line.

2.2.6.1,5.1 The GSPLINE Qualifier

The GSPLINE qualifier sets the order of interpolation to be used for the representation of the geometry of
the substructure along the interface. When GSPLINE is set to 1,2, or 3, then piecewise linear, or quadratic or
cubic spline functions (respectively) will be used to represent the geometry of the interface. This qualifier is

required only once per interface element; if it is specified more than once, then only the last value will be
retained. If the /CURVED qualifier has not been set on the ELEMENT command line, then GSPLINE will be

7-12 A Generic iImertace Element for COMET-AR

June 22, 1994 7. Generic interface Element Processor

setto 1. The current implementation restricts the use of this qualifier in conjunction with the COORDI-
NATES subcommand. It may only be used with a linear interface and therefore must be set to 1.
(Default: /GSPLINE=1)

2.261.5.2 The FILTER* Qualifiers

if the COORDINATES subcommand has been used to define the interface geometry, it may be useful to
set filters on the coordinates and node numbers of nodes to be processed, especially if the model is very
large. With no filters, the El processor will search the entire domain for nodes along the interface. Four fitters
(/FILTERx, /FILTERYy, /FILTERz, and /FILTERn) have been provided. The input to each is a pair of numbers
representing the lower and upper bounds on the region to be searched (e.g., /FILTERX=1.0,10.0 /FIL-
TERN=200, 300). The coordinate fitters limit the geometric search region; the node number filter limits the
topographic search region. Any combination of the four filters (or all of them) may be specified. (Default:
None)

7.2.6.1.6 The END_NODES Subcommand

The END_NODES subcommand defines the node numbers at the end points of a line which defines the
geometry of the interface element. The END_NODES, COORDINATES, and NODES subcommands are
mutually exclusive. That is, it END_NODES are specified for a given substructure, then COORDINATES and
NODES may not be (and vice versa). if END_NODES are given, then a straight line, passing through the
listed nodes, will define the interface geometry.

Subcommand Syntax:

END_NODES = ny,ns—
[FILTERx=xy,X2 /FILTERy=yy,y [FILTERZ=24,2, -
/FILTERNn=n4,np

where ny,n, are the integer node numbers of the interface element end nodes; x;, y; Z;are coordinates; and n;
are node numbers.

72.6.1.6.1 The FILTER* Qualii

If the END_NODES subcommand has been used to define the interface geometry, it may be useful to set
filters on the coordinates and node numbers of other nodes to be processed, especially if the model is very
large. With no filters, the El processor will search the entire domain for nodes along the linear intertace. Four
fiters (/FILTERx, /FILTERy, /FILTERz, and /FILTERN) have been provided. The input to each is a pair of
numbers representing the lower and upper bounds on the region to be searched (e.g.,
JFILTERZ=10.325,105.920 /FILTERN=475,800). The coordinate filters limit the geometric search
region; the node number fiter limits the topographic search region. Any combination of the four filters (or all of
them) may be specified. (Detault: None)

7.2.6.1.7 The END_DEFINE Subcommand

This subcommand signals the end of the interface element definitions. It should only be issued after all
interface elements have been defined.

A Generic Interface Element for COMET-AR 7-13

7. Generic imeriace Element Processor June 22, 1994

7.2.6.1.8 input Datasets Required by the DEFINE ELEMENTS Command

input datasets are those which define the individual substructures which are connected to the interface
elements. The datasets listed in Table 7.5 must exist for each substructure used to define an interface
element. A description of the contents of each data object may be found in Ref. 7.2-3.

Table 7.5. input Datasets Required by the Define Elements Command

Datasst ~ Description Type
CSM.SUMMARY...mesh Model summary for input Substructure CSM
NODAL.COORDINATE...mesh Substructure nodal coordinates NCT
NODAL.DOF..concase.mesh Substructure constraints NDT
NODAL.SPEC_DISP./dset concase.mesh | Substructure specified displacements NVT
NODAL.TRANSFORMATION...mesh Nodal global-to-local transformations NTT
EltName.DEFINITION...mesh Element definition for input Substructures EDT
EltName.NORMALS...mesh Element nodal normals for Substructures EAT

Note that if displacements are specified for a given substructure, they must be specified prior to calling
the El processor to DEFINE ELEMENTS. If there are no specified displacements on any substructures then
the NODAL.SPEC_DISP./dset.concase.mesh dataset is not required.

7.2.6.1.9 Output Datasets Created/Updated by the DEFINE ELEMENTS Command

Datasets output to the interface element library are those which define the individual intertace elements.
Along with the usual datasets (i.e., those created by ES element processors) several additional objects are
used to define the interface elements. The datasets listed in Table 7.6 will exist in the interface element library.
The datasets marked with the dagger (1) are new objects for which full descriptions appear in Chapter 10 of
this report. A description of the contents of each of the other data objects (those not marked with a dagger)
may be found in Ref. 7.2-3.

Table 7.6. Output Datasets Created/Updated by Define Elements Command

Dataset Description Type
CSM.SUMMARY....mesh Model summary for interface element library CSM
NODAL.COORDINATE...mesh Nodal coordinates NCT
NODAL.DOF..concase.mesh Constraints NDT
NODAL TRANSFORMATION...mesh | Nodal giobal-to-local transformations NTT
NODAL TYPE...mesh! Node types » NAT
EltName.DEFINITION...mesh Element definition EDT
EtName.ELTYPE...mesh! List of finite element types along each interface element EAT
EftName.NODSS...mesh! List of substructures connected to each interface element EAT
EltName.NORMALS...mesh! Normal vectors for finite element nodes and pseudo-nodes EAT
EftName.PARAMS...mesh! intertace element parameters EAT
EftName.SCALE...mesh! Scale factor for each interface element EAT
EttName.SCOORD...mesh! Path coordinates for nodes on interface element EAT

7-14 A Generic Imerface Element for COMET-AR

June 22, 1994 7. Generic interface Element Processor

Table 7.6. Output Datasets Created/Updated by Define Eiements Command (Continued)

EftName.SSID...mesh! List of substructures connected to each interface element EAT

EtName.TANGENT_S...mesh! Element path tangent vectors for nodes and pseudo-nodes | EAT

ENameTANGENT_T...mesh! Element surface tangents for nodes and pseudo-nodes EAT

EtName.TGC...mesh Computational-to-global transtormation matrices for the finite | EAT
element nodes in each interface element.

1 New Object; see Chapter 10 for description.

7.2.6.2 The DEFINE FREEDOMS Command

The DEFINE FREEDOMS command triggers the suppression of inactive degrees-of-freedom. The El
processor will use the information supplied through the DEFINE ELEMENTS command to decide whether or
not there are globally inactive degrees-of-freedom (e.g., driling freedoms). The command has no
subcommands or qualifiers. Execution of the El processor is all that is required. The command syntax is

simply:

DEFINE FREEDOMS

The determination of the active degrees-of-freedom for the pseudo-nodes and the alpha-nodes is made
by the interface element processor during the definition of the elements. In the present implementation, the
computational frames for both the pseudo-nodes and the aipha-nodes are defined so that the drilling degree-
of-freedom is always the sixth degree-of-freedom. During the element definition, two parameters are set
automatically, Drili_Dof and Driil_Sup, and saved in the EAT data object named EltName.PARAMS...mesh (see
Section 10.3 for a description of this data object). The parameter Drili_Dof is set to six. The parameter
Drili_Sup, is a flag which indicates whether or not the Drili_Dof degree of freedom is to be suppressed.

The decision to suppress the driliing degree-of-freedom is made based on two criteria. First, the
suppression need occur only if the interface element connects two substructures, as more than two
substructures cannot be coplanar. Second, if the difference between either substructure normal and the
average normal is greater than one degree at any pseudo-node, the drilling degree of freedom is not flagged
for suppression (i.e., Drill_Sup is set to<false>). If the difference between both substructure normals and
the average normal are within one degree for all pseudo-nodes, the drilling degree-of-freedom is flagged for
suppression (i.e., Drill_Sup is setto<true>).

When the DEFINE FREEDOMS command is issued, the processor reads in the values of Drill_Dof and
Drill_Sup set for each interface element when the DEFINE ELEMENTS command was issued. If Drill_Sup has
been set to <true>, then the degree-of-freedom specified by Drili_Dof is suppressed for each pseudo- and
alpha-node in the interface element. If Drill_Sup has been set to <false>, then no degrees-of-freedom are
suppressed for the interface element pseudo- and alpha-nodes. Once the inactive freedoms have been
suppressed, the remaining active degrees-of-freedom are assigned equation numbers.

A Generic Interface Element for COMET-AR 7-15

7. Generic imerface Element Processor June 22, 1994

7.26.2.1 Input Datasets Required by the DEFINE FREEDOMS Command

input datasets for the DEFINE FREEDOMS command are those which define the interface elements. The
datasets listed in Table 7.7 are used by the El processor during processing of this command. A description of
the EAT object may be found in Chapter 10; all other objects are described in Ref. 7.2-3.

Table 7.7. Input Datasets Required by the DEFINE FREEDOMS Command

Dataset . Description Type
CSM.SUMMARY...mesh Model summary for interface elements CSM
NODAL.DOF..concase.mesh Pseudo-node and aipha-node constraints NDT
NODAL.TRANSFORMATION...mesh Nodal global-to-local transformations NTT
EitName.DEFINITION...mesh Element definition for interface elements EDT
EltName . PARAMS...mesh interface element parameters EAT

7.26.2.2 Output Datasets Created/Updated by the Define Freedoms Command

Output datasets listed in Table 7.8 are those which define the active nodal degrees of freedom and the
nodal reference frames. A description of these objects may be found in Ref. 7.2-3.

Table 7.8. Output Datasets Created/Updated by the DEFINE FREEDOMS Command

Dataset Description Type
CSM.SUMMARY...mesh Mode! summary for interface elements csMm
NODAL.DOF..concase.mesh Pseudo-node and alpha-node constraints NDT
NODAL.TRANSFORMATION...mesh Nodal global-to-local transformations NTT

7.2.7. The El Processor FORM Command

There is presently only one FORM command implemented within the El processor, the FORM
STIFFNESS/MATL command. This command triggers the formation of the element stiffness matrices for all of
the interface elements identified by the processor RESET commands. The command syntax is:

FORM STIFFNESS/MATL

7.2.7.1 Input/Output Datasets

input datasets are largely those created during the interface element definition. The command output is,
for each interface element, the element stiffness matrix which may be assembled along with other finite
element matrices.

7.2.7.1.1 Input Datasets Required by the FORM STIFFNESS Command

Input datasets are those which define the interface elements. The datasets listed in Table 7.7 are used.by
the El processor during the processing of this command. A description of the EAT and NAT objects may be
found in Chapter 10; all other objects are described in Ret. 7.2-3.

7-16 A Generic Intertace Element for COMET-AR

June 22, 1894 7. Generic Interface Element Processor

Tabie 7.9. Input Datasets Required by FORM STIFFNESS Command

Dataset Description Type
CSM.SUMMARY ...mesh Model summary for input intertace elements CSM
NODAL.DOF..concase.mesh Pseudo-node and alpha-node constraints NDT
NODAL.TRANSFORMATION...mesh | Nodal global-to-local transformations NTT
NODAL.TYPE...mesh Node types NAT
EltName.DEFINITION...mesh Element definition for interface elements EDT
EltName.ELTYPE...mesh Finite element types along each interface element EAT
EitName.NodSS...mesh SS connected to each node of each interface element EAT
EitName. NORMALS...mesh Normal vectors for finite element nodes and pseudo-nodes | EAT
EitName.PARAMS...mesh interface element parameters) EAT
EltName.SCALE...mesh Scale factor for each interface element EAT
EltName.SCOORD...mesh Path coordinates for nodes on each interface element EAT
EftName.SSID...mesh List of substructures connected to each interface element EAT
EtName.TANGENT_S...mesh Element path tangent vectors for nodes and pseudo-nodes | EAT
EltName. TANGENT_T...mesh Element surface tangents for nodes and pseudo-nodes EAT
EltName.TGC...mesh Computational-to-giobal transformation matrices for the| EAT

finite element nodes in each interface element.

7.2.7.1.2 Oultput Datasets Created/Updated by the Form Stiffness Command

Only one dataset is output by the FORM STIFFNESS command, EitName.STIFFNESS...mesh, an EMT
object which contains the element stiffness matrix for each interface element.

7.2.8. El Processor Limitations

Along with the limitations listed in Section 1.5, there are curtrently limits on problem parameters which
may be changed by adjusting internal parameter statements. if adjustments to these limits are required, the
COMET-AR maintenance team should be consulted. The current limits are listed in Table 7.10.

Table 7.10. Current Limits on the interface Element implementation

Parameter ;2:;2?:. Value
Maximum number of degrees of freedom per node MaxDoF]
Maximum number of input geometry points MaxXYZ 15
Maximum number of pseudo-nodes which may be generated or specified per MaxPpE 40
interface element
Maximum number of alpha-nodes which may be generated per interface element MaxAIT 60
Maximum number of substructures connected to any one interface element MaxSpE 4
Maximum number of nodes along the interface per substructure MaxNpS 50
Maximum number of finite elements along the interface per substructure MaxEpS 25
Maximum number of interface elements MaxNIE 30
Maximum total number of nodes per substructure MaxTnS 20000
Maximum number of finite element types in each substructure MaxTyp 10
Maximum order of finite elements attached to an interface element MaxFEo 3

A Generic Interiace Element for COMET-AR 7-17

7. Generic interface Element Processor June 22, 1994

7.2.9. El Processor Error Messages

The El processor shell performs emror checking each time a data object is manipulated. The processor
also checks certain maximum values to ensure that they are within the limits set out in Table 7.10. Addition-
ally, error messages are printed if user input is incorrect; in this case, the user will typically be prompted for
the correct input and given the opportunity to re-enter the data.

7.2.10. Examples and Usage Guidelines

7.2.10.1 Example 1: An Example of DEFINE ELEMENTS.

The following procedure defines two interface elements. The first element connects finite element sub-
structures 1 and 2; the second interface element connects finite element substructures 1 and 3. Substruc-
tures 1, 2, and 3 reside in libraries 1, 2, and 3 respectively. A nonzero displacement of 0.01 in the 3-direction
(in the intertace frame) has been applied to the pseudo-nodes of interface element 1. The same element has
a zero constraint on the 3-direction rotation on the alpha-nodes in substructure 1 (in the edge frame for sub-
structure 1) and a zero constraint on the 2-direction rotation on the alpha-nodes in substructure 2 (in the edge
frame for substructure 2). No additional constraints have been appiied to interface element 2. The interface
elements will be written to a library with a logical device index of 4 and will be assigned a mesh identification
of 0, a load set number of 1, and a constraint set of 1.

*procedure EI_Define
. Define Interface Elements

run EIl

. Processor Resets
reset 1di =4
reset mesh =0
reset step =0
reset load_set =1
reset cons_set =1

. Element Definitions
DEFINE ELEMENTS
ELEMENT 1 /DSPLINE=3
CONSTRAINTS
NONZERO
d3 = 0.01
END_CONSTRAINTS
SS 1 /LDI=1 /FE /MESH=0 /CONS=1
NODES = 1,7,2 /GSPLINE=3
CONSTRAINTS
ZERO theta3
END_CONSTRAINTS
SS 2 /LDI=2 /FE /MESH=0 /CONS=1
NODES = 25,50,5 /GSPLINE=3
CONSTRAINTS
ZERO theta2
END_CONSTRAINTS
ELEMENT 2 /DSPLINE=3 /SCALE=10000.
8s 1 /LDI=1 /PE /MESH=0 /CONS=1
NODES = 35,45,2 /GSPLINE=3
$S 3 /LDI=3 /FE /MESH=4 /CONS=2
NODES = 110,200,10 /GSPLINE=3
END_DEFINE

*end

7-18 A Generic intertace Element for COMET-AR

June 22, 1994

7. Generic Imerface Element Processor

7.2.10.2 Example 2: An Example of DEFINE FREEDOMS

The following example runstream sets the active degrees of freedom for interface elements located in the
library with logical device index of 1. The active freedoms are defined for those interface elements associated

with mesh 0, load set and constraint set 1.

*procedure Defn_EI_Freedoms
. Suppress inactive degrees of freedom
run EIl1
. Processor Resets
reset 1di
reset mesh
reset step
reset load_set
reset cons_set

[-

1

DEFINE FREEDOMS
STOP
*end

. Issue command to set active freedoms

7.2.10.3 Example 3: An Exampie of FORM STIFFNESS

The following example runstream forms the element stiffness matrices for interface elements located in
the library with logical device index of 1. The stitiness matrices are defined for those interface elements asso-

ciated with mesh 0, load set and constraint set 1.

*procedure Form_EI_Stiffness
. Form Element Stiffness matrices
run EI1
. Processor Resets
reset 1di
reset mesh
reset step
reset load_set
reset cons_set
. Issue command to form stiffness
FORM STIFFNESS/MATL
STOP

[T T S I}
- -

*end

7.2.11. References

7.2-1 Stanley, G. M. and Nour-Omid, S., The Computational Structural Mechanics Testbed Generic
Structural-Element Processor Manual, NASA Contractor Report 181728, March 1990.

7.2-2 Stanley, G.M., Huribut, B., Levit, i., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User’s

Manual, LMSC Report #P032583, 1993.

7.2-3 Stanley, G. M. and Swenson, L., HDB Object-Oriented Database Utilities for COMET-AR, NASA CSM

Contract Report, August, 1992.

A Generic Intertace Element for COMET-AR

7. Generic Interface Element Processor June 22, 1984

THIS PAGE INTENTIONALLY BLANK

7-20 A Generic Interface Element for COMET-AR

June 22, 1994 7. Generic interface Element Processor

7.3. Processor El1 - Hybrid Variational (HybV) Interface
Element

7.3.1. Element Description

Processor El1 contains a hybrid variational interface element (hereafier referred to as the HybV interface
element) which may be used 10 connect substructures that have been modeled with independently dis-
cretized, nodally incompatible finite element models. The element’s active degrees of freedom include poten-
tially three displacements and three active rotations per node as well as traction degrees of freedom along
the connecting finite element substructures. All incoming substructures must have the same number of active
degrees of freedom at each node (i.e., a substructure with five active freedoms per node cannot be con-
nected to a substructure with six active freedoms per node through the HybV intertace element). The element
formulation has been discussed in detail in References 7.3-1 through 7.3-3, however, key elements of the for-
mulation are reproduced in the following sections. Additional discussion of the implementation of computa-
tional reference frames is also included.

7.3.1.1 Theoretical Description

In the following discussion, it is assumed that there is only one interface element in the system. This
assumption is made solely to simplify the discussion; the actual implementation is general and accommo-
dates more than one interface element. (Note: current FORTRAN parameter definitions limit the number of
interface elements to 30 per analysis; see Section 7.2.8)

Consider, for example, the domain shown in Figure 7.2 and modeled as three independently discretized
substructures, Qy, Q,, and Q3. The depiction of three substructures is for discussion purposes only; the ele-
ment formulation is generally applicable to an arbitrary number of independently discretized substructures.
The generally curved interface element path, S,, is discretized with a mesh of evenly spaced pseudo-nodes
{(open circles in the figure) which need not be coincident with the interface nodes (filled circles in the figure) of
any of the substructures. That is, the discretization of the interface path is independent of the discretization of
the connected substructures.

interface Element Finite element

pseudo-nodes

Figure 7.2. HybV Interface Element

A Generic intertace Element for COMET-AR 7-21

PRECEDING PAGE BLANK NOT FILMED

7. Generic Imerface Element Processor June 22, 1994

The hybrid variational formulation uses an integral form for the compatibility between the intertace ele-
ment and the substructures. The total potential energy is modified by adding a constraint integral for each
interface. Namety,

N 55 T Nes -
M= Ym+Y|[rywv-uds|= YO+, (7.3-1)
k=1 j=1\g k=1

where I1 is the modified total potential energy of the system, the subscript k denotes the substructure, Ny is
the total number of substructures (three for Figure 7.2), ng, is the number of substructures connected to the
specific interface element (three for Figure 7.2), v is the interface element displacement vector (transformed
to the edge frame for substructure /), A;is a vector of Lagrange multipliers (in the edge frame) for substructure

J» ujis the displacement vector (in the edge frame) for substructure j, IT_ is the constraint integral, and S is
the path of integration along the interface. The potential energy of each substructure, Iy, is defined as usual
by ,
1.7 T
I, = 30,K, Q= Qi fy (7.3-2)

where Ky is the stifiness matrix, q, is the generalized displacement vector, and fis the external force vector
corresponding to substructure k, all in the finite element nodal computational frame.

The torm of the displacement u; is assumed as is usual in the finite element method except that it is
assumed in the edge frame (the computational frame for the alpha-nodes), namely, u i = u"i = "dﬂd,--
where q,, is a vector of generalized displacements for the finite element nodes of substructure j along the
interface. ‘I’he vectors q"i are transformed subsets of the generalized global displacement vector q, . The
unknown Lagrange multipliers, A;, are assumed to be of the form A j = ;'di = Rdiad -

Along each interface element it is assumed that the displacement, v, is defined in the edge frame by

_ - P
v; = vdl_ = ‘b%l. (7.3-3)

where & is a matrix of interpolating functions and q is a vector of generalized displacements associated
with the images of the pseudo-nodes on substructure j. The interpolation matrix & is formed by passing a
cubic spline through the evenly spaced pseudo-nodes.

Making the appropriate substitutions, Equation (7.3-1) yields the following expression for the total poten-
tial energy:

55 Mg
= 1.7 T T T T.T
k=1 j=1 _
where the vector q, is a vector of pseudo-node displacements (q transformed from the edge to the
intertace frame) and the vector q; is a subset of the global nodal conWational vector, Qx. The matrices M;
and G; are integrals on the interface which contain transformations and are defined as

T P T
M, = [T wt No g ds; and G;= IT'di‘b Ry ds; (7.3-5)
s / J s)

where N, R, and @ are as previously defined and the transformations, T, and de‘ are defined in the
following manner. ! !

7-22 A Generic inmerface Element for COMET-AR

June 22, 1994 7. Generic imertace Element Processor

The matrix T, transforms the qdl into g; (i.e., transforms from the edge to nodal computational frame)
and is defined by the relationship:

where ng, permits the coupling of the alpha-nodes and the finite element nodes and is the global-to-edge
frame transformation which may be constructed at each finite element node once the edge frame has been
defined and which is constructed by the El shell and passed to the El1 kemel. The matrix T _ is the nodal-
computational-to-global transformation matrix which resides in the NTT data object, exists to/ each node in
each finite element substructure, and is passed down to the El1 kernel by the El shell.

The matrix Tp permits the coupling of the alpha-nodes and the pseudo-nodes and transforms the edge
frame pseudo-nod’e displacements for each substructure into the interface frame pseudo-node displace-
ments, the q,. Interface frame pseudo-node displacements are defined for each substructure in terms of the
edge frame pseudo-node displacements as:

_ P_ P X
The matrix T: is the edge-to-global frame transformation for the pseudo-nodes and is constructed at the
image of each pseudOonode for each substructure by the El processor shell. The matrix T is the global-to-
interface transformation which is constructed at each pseudo-node by the El processor shel.

The hybrid variational interface element “stiffness” matrix thus contains coupling terms which augment
the stiffness matrices of the substructures to which each interface element is attached. For the interface ele-
ment shown in Figure 7.2, the interface element “stiftness™ matrix, K, and vector of unknowns are given by

© 0 00 MO0 O] q
€1
0 000 OM,D
2 q.,
0 0 00 0 0M, g q
0 O M ¢ €3
0 000 GG,G
Ke=|0 0G| =] _ T‘z“‘;' q| = |a.|- (7.3-8)
M G o M, 0 0G, 0 00O oy Oy,
T T
0O M,0G, 00 0 Oy,
T AT
[0 0 M;G; 0 0 0 | s

Users should fully understand the differences among the various computational reference frames. Con-
straints along the interface, should they be required, must be applied in the appropriate computational
frames, namely, the edge frames for the aipha-nodes, the interface frame for the pseudo-nodes, and the
nodal computational frame for the finite element nodes. In general, these may all be different frames and a
zero value in one frame may well result in multipoint constraints in the other two frames. Additional care must
be taken in the application of drilling freedom suppression which is automatic for the pseudo-nodes but may
need to be applied to the alpha-nodes. For both pseudo-nodes and alpha-nodes however, the drilling degree-
of-freedom is aiways the sixth degree-of-treedom.

A Generic interface Element for COMET-AR 7-23

7. Generic imertace Element Processor June 22, 1994

i

7.3.2. Displacement and Traction Representation

For each interface element, the form of the substructure nodal displacement along the interface, uy, is
assumed in the edge frame using the usual Lagrange shape functions along each substructure edge (i.e., lin-
ear functions for 4-node finite element edges; quadratic functions for 9-node finite element edges, etc.). The
interface displacement, v,, is assumed in the interface frame and depends on the function chosen by the user
(piecewise linear, or quadratic or cubic spline functions). The unknown Lagrange multipliers, A4, are also
assumed in the edge frame for each substructure and are taken to be constants when linear finite elements
are used along the interface for a given substructure, and linear functions when quadratic finite elements are
used along the interface for a given substructure.

7.3.3. Element Geometry and Node Numbering

The HybV interface element is illustrated in Figure 7.3. Finite element nodes are shown as filled circles,
pseudo-nodes are shown as open circles. The tractions are attached to the finite elements along the interface
of each substructure through alpha-nodes. These alpha-nodes have no actual physical location; they are
called nodes only to faciiitate the implementation of the interface element. Alpha-nodes are defined according
to the finite element type along the substructure edge. Since the tractions are assumed to be linear when 9-
node finite elements are used, two alpha-nodes are created for each 9-node finite element along the inter-
face. Likewise, since tractions are assumed 10 be constant when 4-node finite elements are used, one alpha-
node is created for each 4-node element along the interface.

Element node numbering includes the node numbers of the nodes along the interface from each connect-
ing substructure as well as the interface element pseudo-nodes and aipha-nodes. Both the pseudo- and
alpha-nodes are generated internally, assigned numbers intemnally, and are in general, compietely transpar-
ent to the user. Their node numbers begin at 1 and run sequentially until all are numbered. New pseudo- and
alpha-nodes are generated by each interface element. An example of interface element connectivity is shown
in Figure 7.3.

7-24 A Generic interface Element for COMET-AR

June 22, 1994 7. Generic intertace Element Processor

Interface element connectivity:
m
112
113
114
118

Substructure 1 (finite element
: nodes)

Substructure 2 (finite element
nodes)

Finite Element nodes

Alpha-nodes - two per finite
pha element along each
substructure
connected at the

PARNIJOONONELON AU [0 @~

Figure 7.3. Node Numbering for the HybV Interface Element

HybV interface elements can only intersect each other at interface element ends. When two interface ele-
ments do intersect, a duplicate pseudo-node is placed at the intersection (i.e., end) point.

7.3.4. Element Implementation Status and Limitations

The HybV interface element is a one dimensional element so it will only join substructures along a line or
general curve in space. it may only be used for linear, static, elastic analysis at present although in the future
it is expected that a general nonlinearity capability will be developed and implemented. Attached
substructures must be modeled using either 4-, 8-, or 9-node quadrilateral or 3- or 6-node triangular finite
elements. There is currently no 2-dimensional version of the HybV element (to connect solid models). The
limitations on the number of incoming substructures, degrees-of-freedom, and other problem parameters are
dictated by the limitations enumerated in Section 7.2.8.

7.3.5. References

7.3-1 Aminpour, M. A, Ransom, J. B., and McCleary, S. L., “Coupled Analysis of Independently Modeled
Finite Element Subdomains,” AIAA Paper Number 92-2235, 1992.

7.3-2 Aminpour, M.A., McCleary, S.L., and Ransom, J.B., “A GlobalLocal Analysis Method for Treating
Details in Structural Design,” Proceedings of the Third NASA Advanced Composites Technology
Conference, compiled by J.G. Davis, Jr. and H.L. Bohon, NASA CP-3178, Vol. 1, Part 2, 1992, pp.
967-986.

7.3-3 Ransom, J. B., McCleary, S. L., and Aminpour, M. A., “A New Interface Element for Connecting
independently Modeled Substructures,” AIAA Paper Number 93-1503, 1993.

A Generic inertace Element for COMET-AR 7-25

7. Generic interiace Element Processor

June 22, 1884

THIS PAGE INTENTIONALLY BLANK

7-26 A Generic imerface Element for COMET-AR

June 22, 1994 8. Master Mode! Generation

8. Master Model Generation

8.1. Overview

in this Chapter, generation of the master model is described. Current assemblers, renumbering strate-
gies, and solvers, all require that element matrices exist in a single library file and that a single giobal system
matrix exist for a given model. The interface element allows the user to keep different models in different
library files; therefore, these files must be combined into a single library, or Master Model. The Master Model
generator, processor MSTR, takes as input any number of substructures and writes out a single database
containing one, consolidated, structural model. When interface elements are used, a Master Model must be
built using this utility processor regardiess of whether the input substructures reside in one or more than one
library. The interface elements are always written out to a separate database library and thus will aiways have
1o be combined with the substructures to which they are connected.

The Chapter is organized as listed in Table 8.1
Table 8.1. Outline of Chapter 8: Master Model Generation

Section Processor Function
2 MSTR Generate a single master model
A Generic Imertace Element for COMET-AR 8-1

PRECEDING PAGE BLANK NOT FILMED

8. Master Mode! Generation June 22, 1994

THIS PAGE INTENTIONALLY BLANK

8-2 A Generic Interface Element for COMET-AR

June 22, 1994 8. Master Model Generation

8.2. Processor MSTR - Master Model Generator

8.2.1. General Description

The MSTR processor takes as input any number of substructures (cumently they may be either finite
element or interface element substructures) and creates a single, consolidated structural model. it performs
this merging of substructures by stacking all of the nodes in a list (i.e., nodes from substructure 1, nodes from
substructure 2, etc.) and relabeling them sequentially. Nodes from the interface element substructure are
added at the end of the node list, with pseudo-nodes listed first and alpha-nodes following. The same
stacking and relabeling is also performed on the element definitions. Once the nodes have been relabeled,
the element connectivities are changed to reflect the new node labels. All the data needed to solve the
system of equations are saved based on the new node and element labels. it should be noted that at no time
in this process is the original data changed; the MSTR processor creates an entirely new model, in a library
separate from the original substructures’ data libraries. The MSTR processor aiso has a post-processing
function which permits the user to split the NODAL.DISPLACEMENT.+ results data object of the Master Model
into substructure objects for further post-processing.

8.2.2. Command Classes

The MSTR processor recognizes three command classes as listed in Table 8.2. Each of these command
classes has different keywords and additional subcommands which are described in the following sections.

Table 8.2. Master Model Generator (Processor MSTR) Command Classes

Command Class Function
DEFINE Defines substructures to be merged.
MERGE Merges specified substructures into a single master model.

POST_PROCESS | Spiits the master model results data back into substructure
results data for those substructures specified.

A Generic Inwerface Element for COMET-AR 83

PRECEDING PAGE BLANK NOT FiLMi:

8. Master Model Generation June 22, 1994

8.2.3. The MSTR Processor DEFINE Command

The DEFINE command class currently has only one form, DEFINE SUBSTRUCTURES. This command
has several associated subcommands and additional qualifiers. The DEFINE SUBSTRUCTURES command
must be issued prior to both the MERGE and the POST_PROCESS commands or the processor will not
know which substructures need to be merged or post-processed. A template for execution of the DEFINE
SUBSTRUCTURES command is provided as follows:

DEFINE SUBSTRUCTURES
SUBSTRUCTURE i /FE
LIBRARY = ildi
MESH = imesh
LOAD_SET = jiset
CONSTRAINT_CASE = incon
LOAD_STEP = fistep
SUBSTRUCTURE j /IE
LIBRARY = jidi
MESH = jmesh
LOAD_SET = jiset
CONSTRAINT_CASE = jncon
LOAD_STEP = Jistep
END_DEFINE

Each of the subcommands and qualifiers are discussed in detail in subsequent sections.

8.2.3.1 The SUBSTRUCTURE Subcommand

The SUBSTRUCTURE subcommand signifies that a new substructure definition is beginning. These sub-
structures are usually the same as those identified during the DEFINE ELEMENTS process using the El pro-
Cessor.

Subcommand syntax:

SUBSTRUCTURE i {/FE /BE /RR /IE}

where i is an integer identifying the substructure number and the optional qualifiers are described in the
following subsection.

8.2.3.1.1 The /FE, /BE, /RR, /IE Qualifiers

This set of qualifiers identifies the form of the idealization of the substructure. /FE identifies a finite ele-
ment substructure, /BE identifies a boundary element substructure, /RR identifies a Rayleigh/Ritz substruc-
ture, and / IE identifies a substructure which contains interface elements. Cumrently, onlythe /FE and /IE
qualifiers can be used. COMET-AR has no current capability for boundary element or Rayleigh/Ritz sub-
structures. This set of qualifiers is a mutually exclusive set (i.e., a substructure can have no more than one of
these qualifiers). (Detault value: None)

84 A Generic Intertace Element for COMET-AR

June 22, 1994 8. Master Model Generaton

8.2.3.2 The LIBRARY Subcommand

The LIBRARY subcommand identifies the logical device index of the library containing this substructure.
Subcommand syntax:

LIBRARY = ldi

where idiis an integer identifying the logical device index number of the library. (Default value:1)

8.2.3.3 The MESH Subcommand

The MESH subcommand identifies the mesh number of the current substructure.
Subcommand syntax:

MESH = mesh

where meshis an integer identifying the mesh number of the current substructure. (Defautt value: 0)

8.2.3.4 The LOAD_SET Subcommand

The LOAD_SET subcommand identifies the load set number for the current substructure.
Subcommand syntax:

LOAD_SET = joad_set

~ where Joad_set is an integer identifying the load set number of the current substructure. (Default value: 1)

8.2.3.5 The CONSTRAINT_CASE Subcommand

The CONSTRAINT_CASE subcommand identifies the constraint case number for the substructure.
Subcommand syntax:

CONSTRAINT_CASE = constraint_case

where constraint_case is an integer identifying the constraint case for this substructure. (Detautt valse:1)

8.2.3.6 The LOAD_STEP Subcommand

The LOAD_STEP subcommand identifies the load step number for this substructure.
Subcommand syntax:

LOAD_STEP = load_step

where load_step is an integer identifying the load step number for this substructure. For linear analyses,
load_step should be zero. (Detfault value: 0)

A Generic Intertace Element for COMET-AR 85

8. Master Mode! Generation June 22, 1994

8.2.3.7 The END_DEFINE Subcommand

The END_DEFINE subcommand signals the end of substructure definitions.
Subcommand syntax:

END_DEFINE

8.2.4. The MERGE (or MERGE_SUBSTRUCTURES) Command

This command is used to trigger the merging of the identified substructures. The input to the MERGE
command is a list of substructures to be merged into the master model (for exampleMERGE 1, 3, 4 implies
that substructures 1, 3, and 4 are to be merged into the master model). The command requires that the sub-
structures be listed using the substructure identifier of the DEFINE SUBSTRUCTURES command (e.g., the
substructure identified as substructure 2 when defined will be merged as substructure 2). A template for exe-
cution of the MERGE command follows:

MERGE ijk Q8 MERGE_SUBSTRUCTURES ik
LIBRARY = i
FILE = filg_name
MESH = mesh
LOAD_SET = iset
CONSTRAINT_CASE = ncon
LOAD_STEP = istep
EAT = data_object name
NAT = data_object name
SvVT = data_object name
STOP

Each of the subcommands are discussed in detail in subsequent sections.

8.2.4.1 The LIBRARY Subcommand

The LIBRARY subcommand identifies the logical device index of the library which will contain the merged
master model.

Subcommand syntax:

LIBRARY = Idi

where /diis an integer identifying the logical device index number of the library. if the LIBRARY subcommand
is not issued, MSTR will use the next available logical device index. (Default value: None)

86 A Generic imertace Element for COMET-AR

June 22, 1994 8. Master Model Generation

8.2.4.2 The FILE Subcommand
The FILE subcommand identifies the name of the library which will contain the merged master model.
Subcommand syntax:

FILE = file_name

where file_name is a character string identitying the name of the master model library. If the LIBRARY
subcommand is not issued, MSTR will assign the next available logical device index to file_name. (Default
value: None)

8.2.4.3 The MESH Subcommand
The MESH subcommand identifies the mesh number assigned to the merged master model.
Subcommand syntax:

MESH = mesh

where meshis an integer identifying the mesh number of the merged model. (Default value: 0)

8.2.4.4 The LOAD_SET Subcommand
The LOAD_SET subcommand identifies the load set number assigned to the merged master model.
Subcommand syntax:

LOAD_SET = load_set

where load_set is an integer identifying the load set number of the merged model. (Default value:1)

8.2.4.5 The CONSTRAINT_CASE Subcommand

The CONSTRAINT_CASE subcommand identifies the constraint case number assigned to the merged
master model.

Subcommand syntax:

CONSTRAINT_CASE = constraint_case

where constraint_case is an integer identifying the constraint case for the merged model. (Default value:1)

8.2.4.6 The LOAD_STEP Subcommand
The LOAD_STEP subcommand identifies the load step number assigned to the merged master model.
Subcommand syntax:

LOAD_STEP = load_step

where load_step is an integer identifying the load step number for the merged model. For linear analyses,
load_step should be set to zero. (Defautlt value: 0)

A Generic intertace Element for COMET-AR 8-7

8. Master Model Generation June 22, 1994

8.2.4.7 The EAT Subcommand

The EAT subcommand identifies additional element attribute tables which are to be merged for the listed
substructures.

Subcommand syntax:

EAT = data_object_name

where data_object_name is a character string identifying the EAT to be merged. The EAT must exist in all of
the merged substructure libraries. (Default vaiue: None) NOT OPERATIONAL.

8.2.4.8 The NAT Subcommand

The NAT subcommand identifies additional nodal attribute tables which are to be merged for the listed
substructures.

Subcommand syntax:

NAT = data_object_name

where data_object_name is a character string identifying the NAT to be merged. The NAT must exist in all of
the merged substructure libraries. (Default value: None) NOT OPERATIONAL.

8.2.4.9 The SVT Subcommand

The SVT subcommand identifies additional system vector tables which are to be merged for the listed
substructures.

Subcommand syntax:

SVT = data_object_name

where data_object_name is a character string identifying the SVT to be merged. The SVT must exist in all of
the merged substructure libraries. (Default value: None) NOT OPERATIONAL.

8.2.5. The POST_PROCESS Command

This command is used to post-process the master mode!. It splits the master model into its component
substructures once the solution has been obtained. This splitting process is typically done to facilitate the
recovery of stresses for the individual substructures. The input to the POST_PROCESS command is a list of
substructures to be split from the master mode! (for example, POST_PROCESS 1, 3,4 implies that the
displacement results from substructures 1, 3, and 4 are to be split from the master model and placed in the
substructure libraries). The POST_PROCESS command requires that the substructures be identified using
the same identifiers used during the DEFINE SUBSTRUCTURES command (e.g., the substructure identified
as substructure 2 when defined will be post-processed as substructure 2). In fact, it is currently required that
the DEFINE SUBSTRUCTURES command be reissued. A template for execution of the POST_PROCESS
command follows:

88 A Generic Interface Element for COMET-AR

June 22, 1994

8. Master Model Generation

POST_PROCESS i,jk
LIBRARY -
MESH -
LOAD_SET -
CONSTRAINT_CASE
LOAD_STEP

END_POST

STOP

idi .
mesh
iset
ncon

Each of the subcommands are discussed in detail in subsequent Sections.

8.2.5.1 The LIBRARY Subcommand

The LIBRARY subcommand identifies the logical device index of the library containing the Master Model.

Subcommand syntax:

LIBRARY = /di

where Kiis an integer identifying the logical device index number of the library. (Defautlt value:1)

8.2.5.2 The MESH Subcommand

The MESH subcommand identifies the mesh number of the merged model.

Subcommand syntax:

MESH = mesh

where mesh is an integer identifying the mesh number of the merged model. (Default value: 0)

8.2.5.3 The LOAD_SET Subcommand

The LOAD_SET subcommand identifies the load set number for the merged model.

Subcommand syntax:

LOAD_SET = load_set

where load_set is an integer identifying the load set number of the merged model. (Default value: 1)

A Generic Interface Element for COMET-AR

8-9

8. Master Mode! Generation June 22, 1994

8.2.5.4 The CONSTRAINT_CASE Subcommand

The CONSTRAINT_CASE subcommand identifies the constraint case number for the merged model.
Subcommand syntax:

CONSTRAINT_CASE = constraint_case

where constraint_case is an integer identifying the constraint case for the merged model. (Defaul value:1)

8.2.5.5 The LOAD_STEP Subcommand

The LOAD_STEP subcommand identifies the output load step number for the merged model.
Subcommand syntax:

LOAD_STEP = load_step

where load_step is an integer identifying the load step number for the merged model. For linear analyses,
load_step should be set to zero. (Defautlt value: 0)

8.2.5.6 The END_POST Subcommand

The END_POST subcommand signals the end of processing for the POST_PROCESS command. The
command is required input.

Subcommand syntax:

END_POST

8-10 A Generic imerface Element for COMET-AR

June 22, 1984 8. Master Model Generation

8.2.6. Database Input/Output

8.2.6.1 Input Datasets

Several datasets are required by MSTR during the merge process; others are optional and will be
merged if they are present in one or more of the substructures (e.g., nodal forces). Table 8.3 lists those
datasets required for both the merge and the post-processing options. Datasets which are optional (i.e., not
required) are indicated with an asterisk on the Type (e.g., EAT" is an optional EAT object). All datasets listed
appear in both the substructure and the interface element data libraries. The following definitions apply: mesh
is the mesh number; concase is the constraint case number; /dset is the load set number and E/tName is the

finite or interface element name.
Table 8.3. Input Datasets Required by MSTR Processor

Function Dataset Description . Type
MERGE SS CSM.SUMMARY...mesh Model summary CSM
NODAL.COORDINATE...mesh Nodal coordinates NCT
NODAL.DOF..concase.mesh Constraints NOT
NODAL.EXT_FORCE.dset..mesh Applied nodal forces NVT*
NODAL.SPEC_DISP.idset..mesh Specified displacements NVT*

NODAL. TRANSFORMATION...mesh Nodal global-to-local transformations | NTT

NODAL TYPE...mesh Node types NAT
ElName.DEFINITION...mesh Element definitions EDT
EftName.PARAMS...mesh Interface element parameters EAT
ERName.MATRIX...mesh Element stiffiness matrices EMT
POST-PROCESS | CSM.SUMMARY...mesh Model summary CSM
NODAL.NIDS...mesh Original nodal identifiers NAT
NODAL.DISPLACEMENT./dset.concase.mesh | Solution vector NVT

A Generic intertace Element for COMET-AR 8-11

8. Master Model Generation

June 22, 1954

8.2.6.2 Output Datasets

Several datasets are created by MSTR during the merge process; some of these are considered optional
and will be created only if they are present in one or more of the substructures (e.g., nodal forces). Table 8.4
lists those datasets which are created either always or optionally for both the merge and the post-processing
options. The datasets listed as active for the merge process will be written to the master model library; the
post-processing datasets will be written to the individual substructure objects. Datasets which are optional
(i.e., not required) are indicated with an asterisk on the Type (e.g., EAT" is an optional EAT object). The fol-
lowing definitions apply: mesh is the mesh number; concase is the constraint case number; idset is the load
set number and EitName is the finite or interface element name.

Table 8.4. Output Datasets Created/Modified by the MSTR Processor

Function Dataset Description Type
MERGE SS CSM.SUMMARY...mesh Model summary CSM
NODAL.COORDINATE...mesh Nodal coordinates NCT
NODAL.DOF..concase.mesh Constraints NDT
NODAL.EXT_FORCE./dset.mesh Applied nodal forces NVT*
NODAL.NIDS./dset..mesh Original node labels (numbers) NAT
NODAL.SPEC_DISP.kiset concase.mesh Specified displacements NVT*
NODAL.TRANSFORMATION...mesh Nodal global-to-local transformations | NTT
NODAL.TYPE...mesh Node types NAT
EntName.DEFINITION...mesh Element definitions EDT
EitName.MATRIX...mesh Element stiffness matrices EMT
POST-PROCESS | NODAL.DISPLACEMENT./dset.concase.mesh | Solution vector NVT

8.2.7. Processor Limitations

Along with the limites listed in Section 1.5, there are currently fimits on many of the problem parameters
which may be changed by adjusting intemal parameter statements. if adjustments on these limits are
required, the COMET-AR maintenance team should be consulted. The current limits are listed in Table 8.5.

Table 8.5. Current Limits on the Master Model Generation

Parameter Value
Maximum number of degrees of freedom per node (maxDoF) 6
Maximum total number of pseudo-nodes model-wide (maxnPn) 1000
Maximum total number of alpha-nodes model-wide (maxnAn) 2000
Maximum total number of nodes per substructure 20000
Maximum number of finite element types 10
Maximum number of element types (including interface elements) 100
Maximum number of substructures 5
Maximum total number of nodes (in the master model) 50000

8-12

A Generic interface Element for COMET-AR

June 22, 1994 8. Master Model Generation

8.2.8. Processor Error Messages

The MSTR processor performs error checking each time a data object is manipulated. The processor
also checks certain maximum values to ensure that they are within the limits set out in Table 8.5. Additionally,
error messages are printed if user input is incorrect; in this case, the user will typically be prompted for the
correct input and given the opportunity to re-enter the data.

8.2.9. Examples and Usage Guidelines

8.2.9.1 Example 1: An Example of Merging two Finite Element Substructures with an
Interface Element Substructure

The following example runstream combines the finite element models labeled as substructures 1 and 2
and the interface elemnent substructure labeled as substructure 3and creates a new model which is written to
library 4 with the file name master.model. This new master model carries the mesh identifier of 0, a load set
number of 1, and a constraint case of 1.

Run MSTR
DEFINE SUBSTRUCTURES
SUBSTRUCTURE 1 /FE
LIBRARY =1
MESH =0
LOAD_SET =1
CONSTRAINT_CASE =1
LOAD_STEP =0
SUBSTRUCTURE 2 /FE
LIBRARY = 2
MESH =0
LOAD_SET = 2
CONSTRAINT_CASE =1
LOAD_STEP =90
SUBSTRUCTURE 3 /IE
LIBRARY = 4
MESH = 0
LOAD_SET =1
CONSTRAINT_CASE =1
LOAD_STEP =0
END_DEFINE
MERGE SUBSTRUCTURES 1,2,4
LIBRARY = 3
FILE = ‘master.model’
MESH =0
LOAD_SET =1
CONSTRAINT_CASE =1
STOP

A Generic interface Element for COMET-AR 8-13

8. Master Model Generation June 22, 1994

8.2.9.2 Example 2: An Example of Post-processing the Master Model into two Finite
Element and one Interface Element Substructures

The following exampie runstream takes the master mode! which resides in library 3 and splits off results
for finite element substructures labeled as substructures 1 and 2 and for the interface element substructure,
labeled as substructure 3.

Run MSTR
DEFINE SUBSTRUCTURES
SUBSTRUCTURE 1 /FE
LIBRARY =1
MESH =0
LOAD_SET =1
CONSTRAINT_CASE =1
LOAD_STEP =0
SUBSTRUCTURE 2 /FE
LIBRARY = 2
MESH =0
LOAD_SET 2
CONSTRAINT_CASE =1
LOAD_STEP =0
SUBSTRUCTURE 3 /IE
LIBRARY = 4
MESH =0
LOAD_SET =1
CONSTRAINT_CASE =1
LOAD_STEP =0
END_DEFINE
POST_PROCESS 1,2,4
LIBRARY =3
MESH =0
LOAD_SET =1
CONSTRAINT_CASE =1
END_POST =1
STOP

8.2.10. References

None.

8-14 A Generic Interface Element for COMET-AR

June 22, 1994 V. Dewveloper Interface

Part V
DEVELOPER INTERFACE

A Generic Interface Element for COMET-AR

V. Developer Interface

June 22, 1984

THIS PAGE INTENTIONALLY BLANK

V-2

A Generic interface Element for COMET-AR

June 22, 1994 9. Deweloper imeriace

9. Developer Interface

9.1. Overview

The interface element processor, El, is composed of three parts: the generic El processor shell, the user-
written El processor cover, and the user-written El processor kemel. The generic shell manages all
interaction between the user and the individual El processor (using CLIP routines described in Ref. 9.3-1) as
well as all interaction between the database and the individual El processor (using HDB routines described in
Ref. 9.3-2). The developer of new interface elements will need to access and modify only two files: the
el *_cover.ams file andtheel *_kernel.ams file. This Chapter contains adescription of the generic shell and
the requirements for the cover routines. The Chapter is organized as follows:

Table 9.1. Outline of Chapter 9: Developer intertace

Section Subject Function
2 New qSymbols | Definitions of new gSymbols.
Description of the uniform user and database

3 El_shell interface for all interface element processors.
4 El cover Description of the software that translates

- between the shell and the kemel routines.
5 makefile Example makefile.

A Generic interface Element for COMET-AR o1

PRECEDING PAGE BLANK NCT FILMED

9. Developer interface June 22, 1984

THIS PAGE INTENTIONALLY BLANK

8-2 A Generic Interface Element for COMET-AR

June 22, 1994

9. Deweloper interface

9.2. New qSymbols

8.2.1. General Description

A gSymbol (Ref. 9.2-1) is simply a FORTRAN integer parameter which is usually used in place of a char-
acter string. There are currently several hundred of these parameters used in COMET-AR. During the imple-
mentation of the interface element, it was found that new qSymbols were needed. Ten new parameters were
added to the gsymbol.inc file using the method outlined in Ref. 9.2-1. These new parameters are listed in

Table 9.2.
Table 9.2. New gSymbol Parameters
Parameter | Value Usage
qAlpha 281 Denotes alpha-nodes (this is not a new gsymbol; this is an additional, new,
meaning assigned to the existing parameter).
qBE 380 | Identifies boundary element substructures
qD 385 Denotes pseudo-nodes
qFE 379 Identifies finite element substructures
qFind 376 Signals the need to locate (find) finite element nodes along a specified path
qForm 378 Signals the need to form a path through the pseudo-nodes
qGet 377 Signals the need to form a path through specified finite element nodes
qlE 382 ldentifies an interface element substructure
qPost 386 identifies the post-processing function of processor MSTR
qRR 381 Identifies Rayleigh/Ritz substructures

9.2.2. References

9.2-1 Stanley, G. M. and Swenson, L., HDB Object-Oriented Database Utilities for COMET-AR, NASA CSM

Contract Repont, August, 1992.

A Generic interface Element for COMET-AR

PRECEDING PAGE BLANK NOT FILMET

9. Dewveloper interiace June 22, 1994

THIS PAGE INTENTIONALLY BLANK

94 A Generic Interiace Element for COMET-AR

June 22, 1994 9. Deweloper Interface

9.3. The Generic Interface Element Processor Shell

9.3.1. General Description

The developer of a new interface element must create his or her own kemel subroutines and must
generate a corresponding e/*_cover.ams file. This cover file translates between the user kemel routines and
the El shell which performs all of the database manipulation. The following sections provide a summary of
each subroutine in the El shell file, e/ *_shell.ams , including its function, argument list (if any), include files
used, and special requirements.

Element names are assigned by the element developer. The shell however assumes that each intertace
element defined by the user is a different element type (since each element can, and usually does, have a
unique number of nodes). The convention adopted by the Elt1 processor is that the element name is
composed of the element processor name, the element type name, and the element number all separated by
underscores (e.g., EM_HybV_1 is the name of element 1, EIf_HybV_5 is the name of element 5). This
element name is used to name element table datasets. #t is strongly recommended that developers of new
elements adopt the same naming convention; this will provide uniformity and minimize confusion for users.

8.3.2. Shell Include Files

The ef*_shell.ams file uses a number of include files which are also available for use by the element
developer. These include files generally contain common blocks, parameter definitions, and type declarations
for variables used throughout the processor. One include file is used by virtually all subroutines, gsym-
bol.Inc. This file is described in detail in the HDB Manual (Ref. 9.3-2) and the reader is referred to that docu-
ment for specifics on the use of gsymbois (integer parameters which all begin with the letter “q” and which
generally replace character data). Several new qSymbols have been added and are described in Section 9.2.
Each of the remaining include files is summarized in the Table 9.3 and listed in subsequent Sections. Vari-
ables and parameters are also defined.

Table 9.3. Summary of Include Flles

Flle Description Section
Sets limits on problem parameters (e.g., maximum
elolim.inc number of nodes, number of substructures) 93.2.1
elocmn.inc Common block data 9.3.2.2
elocom.inc Common block data 9.3.23
eloptr.inc Pointer array parameter and common blocks 9324
A Generic interiace Element for COMET-AR 85

PRECEDING PAGE BLANK NOT FILM:O

9. Developer interface June 22, 1994

9.3.2.1 The elolim.inc Include File

The file el0fim.inc contains parameter definitions which are used throughout the processor. These
parameters set the maximum permissible values for various items such as number of nodes, number of
degrees of freedom per node, and number of interface elements. These maximums are used to dimension
arrays in other include files as well as in subroutines. A listing of the include file is provided as Table 9.4.

Table 9.4. Listing of the elolim.inc Include File

c_beg EIOLIM.INC
integer MAXDOF ! Maximum number of degrees of freedom per node
parameter { MAXDOF = 6)
integer MAXNIP ! Maximum number of integration points per element
parameter (MAXNIP = 144)
integer MaxXYZ ! Maximum number of input geometry points
parameter (MaxX¥Z = 15)
integer MaxPpE ! Maximum number of pseudo-nodes per interface element
parameter { MaxPpE = 40)
integer MaxAlT ! Maximum number of alpha nodes per interface element
parameter (MaxAlT = 60)
integer MaxSpE ! Maximum number of substructures per element
parameter (MaxSpE = 4)
integer MaxNpS ! Maximum number of nodes per substructure (along the interface)
parameter (MaxNpS = 50)
integer MaxEpS ! Maximum number of elements per substructure (along interface)
parameter (MaxEpS- = MaxNpS/2)
integer MaxNEN ! Maximum number of nodes per interface element
parameter (MaxNEN = MaxSpE*MaxNpS+MaxAlT+MaxPpE)
integer MaxTnS ! Maximum total number of nodes per substructure
parameter (MaxTnS = 20000)
integer MaxTyp ! Maximum number of finite element types
parameter (MaxTyp = 10)
integer MaxFEc ! Maximum order of finite elements
parameter (MaxFEo = 3)
integer MaxNG ! Maximum number of interface geometry nodes
parameter (MaxNG = MaxNpS*MaxSpE)
integer MaxPAR ! Maximum number of miscellaneous element parameters
parameter (MaxPAR = 3*MaxSpE+10)
integer MaxNEE ! Maximum number of element equations
parameter (MaxNEE = MaxDOF*MaxNEN)
integer MaxNUT ! Maximum number of items in the upper triangle
parameter (MaxNUT = MaxNEE* (MaxNEE+1)/2)
integer MaxEdg ! Maximum number of element edges per finite element
parameter (MaxEdg = 16)
integer MaxNIE ! Maximum number of interface elements
parameter (MaxNIE = 30)
integer MaxInd ! Maximum number of independent dofs for mpcs
parameter (MaxInd = 20)
integer MaxMPC ! Maximum number of mpcs along interface
parameter (MaxMPC = 6)

c_end EIOLIM.inc

9-6 A Generic Interface Element for COMET-AR

June 22, 1964 9. Deweloper Interface
9.3.2.2 The eiocmn.inc Include File

The file @/0cmn.inc contains several common blocks and type declarations. A summary of the common
blocks and a general description of their contents follows in Table 9.5. A complete listing of the include file is
provided as Table 9.6. "

Table 9.5. Summary of Common Blocks in e/ocmn.inc

Common Block Data Type Contents
EloCiB integer Contains integer data for the substructures
. Contains flioating point data for both the substructures
ElocFB Single or Double | 21 the interface elements
Contains character data for both the substructures and
ElocCB Character the interface elements
EIOIED Integer Contains integer data for the intertace elements
EIOCON Integer Contains integer constraint data
: Contains floating point constraint data for both pseudo-
EIOEID Single or Double and alpha-nodes
EIOEIC Character Contains character representation of constraints
EIOEN Integer Contains integer constraint data

Table 9.6. Listing of the e/l0Ocmn.inc Inciude File

c_beg eilcmn.inc

integer Gcurv, Dspline, NumElty, nss, Gspline

integer ssid, ssldi, ssmesh, ssnn, ssnode, ssns, ssdofs,
sscons, sstelt, ssnelt, ssNet,ssDofn, ssNdofn, ssend,
ssCSM, ssNen, ssMdofn, ssFE, ssBE, ssIE,
ssRR, ssNnode, ssINelt, sstn, nFilter,
Filterx, Filtery, Filterz, ssnact, ssActv, ssfid

o W N

common /EIOCIB/ Geurv, Dspline, NumElty, nss, Gspline,
ssid (MaxSpE}, ssldi (MaxSpE), ssmesh(MaxSpE),
ssnn (MaxSpE) , ssnode (MaxNpS,MaxSpE) ,
ssns (MaxXYZ), ssdofs (MaxDOF, MaxNpS,MaxSpE) ,
sscons (MaxSpE), sstelt (MaxTyp,MaxNpS,MaxSpE),
ssnelt (MaxNpS,MaxSpE), ssNet (MaxSpE),
ssDofn (MaxDOF,MaxSpE), ssNdofn(MaxSpE),
ssend (2,MaxSpE),
ssCSM(MaxSpE), ssNen(MaxTyp,MaxSpE),
ssMdofn(MaxSpE}, ssFE(MaxSpE), ssBE(MaxSpE),
ssIE (MaxSpE), ssRR (MaxSpE), ssNnode (MaxSpE),
ssINelt (MaxTyp,MaxSpE),
sstn(MaxSpE),
nFilter(2,MaxSpE), Filterx, Filtery, Filterz,
ssActv(MaxTnS,MaxSpE), ssnAct (MaxSpE),
ssfid

(Vo VIR S B LY« B - S B N T B S PR N

Definitions:
ssid: substructure id's
ssldi: substructure libraries
ssmesh: substructure mesh number
ssnn: number of interface nodes per substructure
ssnode: 1list of interface nodes for each substructure

O00000o0

A Generic intertace Element for COMET-AR 9-7

June 22, 1994

Table 9.6. Listing of the elocmn.inc Include Flle{(Continued)

c 88ns: number of interface geometry nodes for each substructure
c ssdofs: list of active dofs for each node for each substructure
c sscons: substructure constraint set number)
c sstelt: 1list of element types connected to each interface node
c ssnelt: number of element types connected to each interface node
c ssNet : number of element types in each substructure
c ssDofn: List of active nodal DOF types substructure wide
c ssNdofn: Number of active nodal DOF types substructure wide
c 88CSM: id's for the substructure CSM objects
c ssNen: Number of nodes per finite element type for each substructure
c ssFE: Flags (when = gqFE) denoting finite element substructure
c 8sBE: Flags (when = gBE) denoting boundary element substructure
c ss]IE: Flags (when = qIE) denoting other existing interface elements
c ssRR: Flags (when = QRR) denoting Rayleigh-Ritz substructure
[« ssNnode: Number of nodes in the entire substructure
c ssINelt: Number of element of each element type in each substructure
c sstn: Total number of nodes per substructure.
[< Filter*: Flags to indicate that the filters are on
c ssActv: List of active nodes for the *Find" operation of path routine
c ssnAct: Number of active nodes for the *Find*® operation
[= ssfid: ID of the *fine" substructure (with most nodes along interface)
C=1IF DOUBLE
double precision
C=ELSE
real
C=ENDIF
1 xFilter, yFilter, zFilter, xyzss, coordss, coordei,
2 ssforc, Gxyz, pathss, pathei,ssxyz, scale,
3 tangei, tangss, zero, normsse, normssn, normei,
4 tranei, transs, ssTdg, ssTgc, ssTcg, eiTdg, eiTgs
c
common /EIOCFB/ xFilter(2), yFilter(2),
1 zFilter(2), xyzss(3,MaxXYZ),
2 coordss {3, MaxNpS,MaxSpE),
3 coordei (3,MaxPpE)}, ssforc (MaxDOF, MaxNpS,MaxSpE) ,
4 Gxyz (3,MaxNg), pathss (MaxNpS,MaxSpE),
5 pathei (MaxPpE},
6 s8sxyz (3,MaxTns,MaxSpE), scale,
7 tangei (3,MaxPpE), tangss(3,MaxNpS,MaxSpE},
9 zero,
S normsse (3,MaxTyp, MaxNpS, MaxSpE) ,
1 normssn(3,MaxNpS,MaxSpE) ,normei (3,MaxPpE),
2 tranei (3, MaxPpE), transs(3,MaxNpS,MaxSpE},
3 8sTdg (3, 3,MaxNpS, MaxSpE},
4 8sTgc (3, 3,MaxNpS, MaxSpE),
5 8sTcg (3,3, MaxNpS,MaxSpE) ,
6 eiTdg (3, 3,MaxPpE, MaxSpE),
7 eiTgs (3, 3,MaxPpE}
c
c xFilter: bounds on x-coordinates when interface nodes must be found
c yFilter: bounds on y-coordinates when interface nodes must be found
c 2Filter: bounds on z-coordinates when interface nodes must be found
c Xyzss: coordinates of points (not nodes) used to define path
c coordss: coordinates along the interface for the interface nodes
c coordei: coordinates along the interface for the pseudo-nodes.
c Gxyz: concatinated geometry coordinates along interface
c pathss: coordinates along the path for the interface nodes
c pathei: coordinates along the path for the pseudo-nodes.

A Generic imerface Element for COMET-AR

June 22, 1694 9. Deweloper interface

Table 9.6. Listing of the e/0cmn.inc Include Flie{Continued)

c 8sXyz: xyz coordinates for all nodes in each substructure.
c scale: scale factor for interface element.
c tangei: tangents (along the path s) for the pseudo-nqdes.
c tangss: tangents (along the path s) for finite elemert nodes.
c 8sTcg: nodal global-to-computational transformations
c zero: zero value
c normsse: element nodal normals for each finite element along interface
c normssn: average nodal normal based on only f.e.s along the interface
c normei: pseudo-node normal '
[tranei: transverse surface tangent for pseudo-nodes
c transs: transverse surface tangent for finite element nodes
c ssTdg: nodal global-to-edge frame transformation
c eiTdg: pseudo-nodal global-to-edge frame transformations
c eiTgs: pseudo-nodal interface element path-to-global transformation
c
character*40 EltNam, EltPro, EltTyp
character*40 sscElt
c
common /EIOCCB/ EltNam, EltPro, EltTyp, sscElt(MaxTyp,MaxSpE)
c
c EltNam: element name for interface element; EltPro_EltTyp.
c EltPro: element processor name for interface element
c EltTyp: element type
c sscElt: element names of substructure elements.
c
integer Npn, pnid, nAlpha, nAlphaT, alid
integer ieNen, ieDofn, ieNdofn, ieConn, ieNodSS, anodes
integer DrilDof, DrilSup
c
common /EIQIED/ aNodes (MaxSpE), Npn,
2 pnid (MaxPpE) , nAlpha (MaxSpE),
3 nAlphaT, alid(MaxAlT),
4 ieNen, ieNdofn, ieDofn(MaxDOF),
5 ieConn (MaxNEN), ieNodsSsS(MaxNEN),
6 nApE (MaxSpE) , Net,
7 DrilDof, DrilSup
c
c aNodes: number of alpha-type nodes per substructure
c Npn: Total number of interface element pseudo-nodes
c pnid: pseudo-node "node® numbers
c nAlpha: number of alpha dofs for each SS of each interface element
c nAlphaT: Total number of alphas
c alid: *node" number for the alphas (placed Ndofn per *®node*)
c ieNen: Total number of interface element "nodes® - Npn + nAlphaT +
c number of nodes along each substructure
c ieDofn: Active dofs for the interface element
c ieNdofn: Number of active dofs for the interface element
c ieConn: Interface element connectivity
c ieNodSS: Substructure id's corresponding to nodes in element connectivity
c nApE: number of alphas per finite element
c Net: Number of element types
c DrilDof: Drilling freedom for interface element
c DrilSup: Drilling freedom suppression flag
c
c /-/-/-/-/=/-/~/- CONSTRAINT COMMON BLOCKS SS and EI -/-/-/-/~/~/~/-/
c
integer ssState, nssmpc, issmpc
c

A Generic Interface Element for COMET-AR 9-8

9. Developer Intorface

June 22, 1994

Table 9.6. Listing of the e/0cmn.inc include Flle(Continued)

common /EIOCON/ ssState(MaxDof,MaxSpE),

1 nssmpc (MaxSpE), issmpc(MaxDof, MaxMPC,MaxSpE)
c ssState: State attributes for substructure nodes
c nssmpc: number of mpcs for alpha-nodes
c issmpc: dependent dofs for alpha-nodes
c
C=IF DOUBLE
double precision
C=ELSE
real
C=ENDIF
4 eivals, ssvals, feimpc, fssmpc
c
common /EIOEID/ eivals (MaxDoF), ssvals (MaxDoF,MaxSpE) ,
1 feimpc (MaxInd, MaxMPC),
fssmpc (MaxInd,MaxMPC,MaxSpE)
c
c eivals: values (2ero and nonzero) for pseudo-node constraints
c ssvals: values (zero and nonzero) for alpha-node constraints
c feimpc: values of coefficients for pseudo-node mpcs
c fssmpc: values of coefficients for alpha-node mpcs
c
character*6é ceimpc, cssmpc
c
common /EIOEIC/ ceimpc (MaxInd,MaxMPC),
1 cssmpc (MaxInd,MaxMPC, MaxSpE)
c
c ceimpc: names of independent dofs for pseudo-node mpcs
c cssmpc: names of independent dofs for alpha-node mpcs
c
integer eiState, neimpc, ieimpc
c
common /EIOEII/ eiState(MaxDoF), neimpc, ieimpc {MaxDoF,MaxMPC)
c
c eiState: Constraint flags for pseudo-nodes
c neimpc: Number of MPC's defined for pseudo-nodes.

ieimpc: Dependent freedoms for pseudo-node mpcs

c
c_end eilcmn.inc

9-10

A Generic interface Element for COMET-AR

June 22, 1994

9. Deweloper Interface

9.3.2.3 The elocom.inc Include File

The file e/0com.Inc contains a common block of pointers for the data objects used by the El processor
(E10CBC), a common block which stores the processor reset values and data used by the low leve!l database
routines (EIOCBI), and a common block which stores the data object names (EIOCBA). A complete listing of
the include file is provided as Table 9.7. This include file is based on a file used by the ES processor,

esOcom.inc.

Table 9.7. Listing of the e/Ocom.inc Include Flle

c_beg eilcom.inc

integer

$

0O 0000ao0

integer
parameter

integer
integer
integer
integer
integer

parameter
parameter
parameter
parameter
parameter

pCSM: Pointer
pDIS: Pointer
PEDT: Pointer
pPEFT: Pointer
pPEGT: Pointer
pEIT: Pointer
pELT: Pointer
pFRC: Pointer
PMAS: Pointer
pNCT: Pointer
pNTT: Pointer
pROT: Pointer
pSTF: Pointer
pSTE: Pointer
pSTS: Pointer
pSTN: Pointer
pGCP: Pointer
pAUX: Pointer
PATT: Pointer
PNVT: Pointer
pERT: Pointer
pPNDT: Pointer

OO0 0000000000000 00000O0O00

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

ctls , defs , dofs

nodes (MaxNen)

{ NumDO = 25)

pCSM , pDIs . PEDT , PEFT , PEGT
pELT . PFRC . DMAS ., PNCT , PNTT
pSTF , PSTE . pSTS , PSTN , pGCP
PAUX . PATT , DNVT

PERT , PNDT ., PEAT , PNAT

2, pEDT = 3, pEFT =
7, DFRC = 8, pMAS =

{ pCSM = 1, pDIS
(pEIT = 6, pELT
(
(

pNTT =11, DPROT =12, pSTF =13, pSTE =14,
PSTN =16, pGCP =17, pTEM =18, pAUX =19,
{ PERT =21, pNDT =22, pNVT =23, pEAT =24,
NumDO: Number of different data object types

CSM data object

nodal displacement (NVT) data object
EDT (element definition) data object
EFT (element fabrication) data object
EGT (element geometry) data object

EIT (element interpolation) data object
ELT (element line) data object

FRC nodal force (NVT) data object
nodal lumped mass (NVT) data object
NCT (nodal coordinate) data object
NTT (nodal transformation) data object
nodal rotation {(NAT) data object

ELT (element line) data object

FRC nodal force (NVT) data object
nodal lumped mass (NVT) data object
NCT (nodal coordinate) data object
NTT (nodal transformation) data object
auxiliary storage (EAT) data object
additional attribute (EAT) data object
NVT (nodal vector) data object

ERT (element refinement) data object
NDT (nodal definition) data object

, nodes
common /EIOCBC/ ctls(Mctls), defs(Mdefs), dofs(MaxDof,MaxNen),

PEGT
PNCT
pSTS
pATT
PNAT

ctls: array which contains flags which control the processor functions
defs: array containing element definition (e.g., defs(pdNEN) =

number of nodes for the current element
dofs: array containing an active dof table for the current element
nodes: array containing node numbers for the current element

the

PEIT
PROT
PTEM

A Generic Intertace Element for COMET-AR

9-11

9. Devsloper Intertace

June 22, 1994

Table 9.7. Listing of the e/0com./nc Include Flle

¢ pEAT: Pointer to EAT (element attribute) data object
¢ pNAT: Pointer to NAT (nodal attribute) data object
C | emmm e mr s remm e m et e e e e == = - —
integer DBlen , reserv, 1di0 , step0 , mesh(, ldset
integer id , 1di , step , mesh , buf , coset
integer AUXtyp, AUXloc, Stritt
c
common /EIOCBI/ DBlen, reserv, 1di0, stepO, mesh0, ldset, coset,
$ id(NumDO), 1ldi(NumDO), step(NumDO), mesh(NumDO),
$ buf (NumDO), AUXtyp, AUXloc, AUXcyc, StrAtt
c DBlen: Pointer to EAT (element attribute) data object
¢ reserv: Pointer to NAT (nodal attribute) data object
c 14i0: user specified logical device index for output
c step0: user specified step id for output
c meshO: user specified mesh id for output
c ldset: user specified load set number
c coset: user specified constraint set number
c id: DB pointer identifier for each active, open data object
c 1di: 1di identifier for each active, open data object
C step: step identifier for each active, open data object
c mesh: mesh identifier for each active, open data object
¢ buf: buffer length for each active, open data object
c AUXtyp: data type for element auxiliary storage object
¢ AUXloc: location (e.g., gCent) for element auxiliary storage object
c StrAtt: Type of data (stress, strain, strain energy) saved in EST
o Ty ey g g g g g g g g
character*72 Name, NamDef
c
common /EIOCBA/ Name (NumDO), NamDef (NumDO)
c Name: Data object names
¢ NamDef: Default values for data object names
C memmemmmmrm e mm e mm ettt e e e e c e e et e, e, —————————————-—
c_end eilOcom.inc

98-12

A Generic imertace Element for COMET-AR

June 22, 1994 9. Deweloper Interface

9.3.2.4 The eioptr.inc Include File

The el0ptr.inc file contains pointers into two element definition arrays: ctis and dets (which are found in
the el0cmn.inc tile). The ctis array contains flags which define the individual element implementation scope
(e.g., ctis(pcNLG) indicates whether or not the element formulation is capable of handling geometric noniin-
earity). The dets array contains integer data which define the individual element (e.g., defs(pdNen) is set to
the number of nodes per element). These arrays are passed from the shell to the element cover; the element

developer must fill them (as in the example cover routines of Section 9.4). A complete listing of the include file
is provided as Table 9.8. Note that this include file is based on the include file used by the ES processor,
esOptr.inc. Some items have been deleted as unneeded in el0ptr.inc but the definitions of the items remain-
ing are the same as the ES version of this file.

Table 9.8. Listing of the elOptr.inc Include File

c_beg EIOPTR.INC

c

¢ Pointers for CTLS Array:

€ e et e emeeemmmemmmee—eemeene———————
integer pcCORO , PCNLG . PCNLM , PcNLL
parameter PcCORO = 1, pcNIG = 2 , pcNLM = 3, pcNLL = 4)
integer pcTEMP
parameter (pcTEMP = 22)
integer pclLLliv , peSLliv . pcPLliv . pcBLliv
parameter (pcLLliv= 23, pcSLliv= 24, pcPLliv= 25, pcBLliv=26)
integer pcPSTN , PcPSTS ’
parameter PcPSTN = 27, pcPSTS = 28)
integer pcSTNo , pcSTSo , PcSTEo
parameter (pcSTNo = 29, pcSTSo = 30, pcSTEo = 31)
integer pcLDsS , PCNORO
parameter pcLDS = 32, pcNORO = 33)
integer mCTLS
parameter mCTLS = 33)

€ e mrm e e m et mm e m e e e m e m e e e = " -

¢ Pointers for DEFS Array:

- g g g g g g e
integer pdoOPT , PANEN , pACLAS , PpdANIP
parameter pdOPT = 1, pANEN = 2, pdCLAS = 3 , pdNIP = 4)
integer pdNDOF . pdac ., pANSTR , PdSTOR
parameter pdNDOF = 5, pdC = 6, pANSTR = 7 , pdSTOR = 8)
integer pdDIM , PpdCNS . pdNEE , PASHAP
parameter pdDIM = 9, pdACNS =10, pdNEE =11 , pdSHAP =12)
integer pdTWIS , PpdPARS , PdCENT , PANORO
parameter pdTWIS =13, pdPARS =14, pdCENT =15 , pdNORO =16)
integer pdESPD , PATGE ., pdPROJ
parameter pdESPD =17, pdTGE =18, pdPROJ =19)
integer pANLE , pdNSE , PpANNLT ., PANNST
parameter pdANLE =20, pdNSE =21, pdNNLT =22 , pdNNST =23 }
integer pdP , pdCLASS . PASHAPE
parameter pdP =32, pdCLASS=33, pdSHAPE=34)
integer mDEFS
parameter mDEFS =34)

c ———

¢ Legitimate Values of DEFS(pdCLAS):

c ---
integer idBEAM , 1idSHEL , idsoLI
parameter (idBEAM = 1, idSHEL = 2, idSOLI = 3)

c ———

¢ Legitimate Values of DEFS(pdSHAP):

c ———
integer 1i4QUAD , 1idTRIA
parameter (idQUAD = 1, idTRIA = 2)

c ———

c_end EIOPTR.INC

A Generic Interface Element for COMET-AR

9-13

9. Dewveloper interface June 22, 1994

9.3.3. Shell Subroutines

The @i0_shell.ams file is composed of a number of subroutines which each manage a different function
(e.g., subroutine El0res handles the processor resets). Table 9.9 provides a summary of the functions per-
formed by each subroutine. The command class (see Section 7.2.4 for a description of the options) for which
the subroutine is active is also listed.

Table 9.9. Summary of El_shelt Subroutines

summ File name Function mé"h";:"d '
Ei0 ei0.msc Main driver routine All
EiObeg ei0beg.msc | Initialize the processor All
ElOchks el0chks.msc | Check available processor space All
EiOcmd elocmd.msc | Process user input commands All
Elocrt el0crf.msc Forms normal and tangent vectors in edge and inter- DEFINE
face reference frames
ElOocsm el0csm.msc | Save the necessary data in the CSM data object. DEFINE
Elodef elodef.msc | Process the DEFINE command class DEFINE
El0defe el0defe.msc | Process the DEFINE ELEMENTS command DEFINE
Elodeff elodeff.msc | Process the DEFINE FREEDOMS command DEFINE
Elodefs elodefs.msc | Defines the path coordinates for the interface element; DEFINE
constructs a path based on user input data
ElOedef el0edef.msc | Determines the finite element types of the incoming DEFINE
substructures
Eloelt elOeilt.msc Saves element data in the appropriate element data DEFINE
objects.
ElOend el0end.msc | Ciose the data objects/database before exiting All
Elofind elofind.msc | Find the finite elements connected to the nodes of DEFINE
each substructure
ElOfrm eiofrm.msc | Process the FORM command class FORM
El0log el0log.msc | Set logical flags for execution control All
Elomtx elomtx.msc | Process the element matrix generation FORM
Elonod elonod.msc | Saves nodal data in the appropriate nodal data DEFINE
objects.
ElOres elores.msc | Process RESET command class All
El0set el0set.msc Process individual RESET commands All
ElOtran el0tran.msc | Form transformation matrices based on normal and FORM
tangents

9-14

A Generic Interface Element for COMET-AR

June 22, 1964 9. Deweloper interface

Each command class has its own execution flow through the processor. The three currently availabie
command classes and their individual execution flows are shown in Figures 9.1-9.3. Note that in these
Figures, subroutines listed as “Auxiliary Subroutines” are used to process user input, place and retrieve data
to and from the database, set up arrays, define path variables, and perform other such auxiliary functions.
Subroutines labeled as CSM#*, NCT=, NTT+, etc. are HDB utility routines. The reader is referred to Ref. 9.3-2
for more information about these subroutines.

main

* Auxiliary Subroutines

EIO ——P» El0beg, Elocmd, Eidlog,
v ElOset, ElOres, Ei0en

ElOres

Figure 9.1. Execution Flow for the RESET Command Class

main
Auxillary Subroutines
EN 3t E0beg, Elocmd, \
v El0set, El0res,
ElOdef
Auxliiary Subroutines] Y
CSM*, NCT*, NDT*, NVT*,
Eloedef, Efind, Elodets, [«— El0defe Elodeft | Mé‘:?g?f:gim
Elochks,Elocsm, Elelt, ElOnod,) ,
St L
Elod
(E! cover)
El kernel

Figure 9.2. Execution Flow for the DEFINE Command Class

A Generic inerface Element for COMET-AR 9-15

8. Deweloper interface

June 22, 1994

Auxiilary Subroutines

CSM>*, NTT*, NDT+*, NAT*,

EDT», EAT*, ERT*, EMT+,
Elotran

Y

v

Auxillary Subroutines
El0beg, Elocmd, El0log,
Eloset, Elores, Eom

l— Elotrm

7K

Elomtx

y A

Eiokm
(El cover)

y4

El kernel

Figure 9.3. Execution Flow for the FORM Command Class

in the following subsections, additional information about each of the subroutines listed in Table 9.9 is
provided. The subroutines are described in alphabetical order. The reader is referred to the previous Figures
to visualize the actual order of execution. For descriptions of the subroutines listed as utilities, the reader is
referred to Refs. 9.3-1 through 9.3-4. Additional subroutines which may be thought of as utilities are located in
the file e/Outil.ams. These utility subroutines are generally called by the EJ0+ subroutines listed in Figures

9.1-9.3 as Auxiliary Subroutines.

9.3.3.1 Subroutine EI0

Subroutine Ef0 is the primary driver routine for the processor. It processes the user input and directs the
processor execution. Subroutine EI0 uses the include files and calls the subroutines listed in Table 9.10.

Table 9.10. Include Files and Subroutines Used by Subroutine E/0

Subordinate Utility
include Flles Subroutines Subroutines
elocom.inc
elofig.inc ElObeg, ElOcmd, ElOlog,
ef0lim.inc El0set, ElOres, El0def, CmdPro, Err, CMATCH
eil0ptr.inc Elofrm, ei0end
qsymbol.inc

8-16

A Generic interface Element for COMET-AR

June 22, 1994 9. Developer Interface

9.3.3.2 Subroutine E/Obeg

Subroutine ElObeg initializes the El processor and the processor resets (i.e., the variables /di, step,
mesh, zero, Idset, idfac). It also sets default dataset names.

Table 9.11. Include Flies and Subroutines Used by Subroutine E/Obeg

Subordinate Utility
inchude Flles Subroutines Subroutines
elocmn.inc
el0com.inc
elofig.inc BegPro, GSCLRI,
ei0lim.inc None UpCase
eloptr.inc
gsymbol.inc

9.3.3.3 Subroutine ElOchks

Subroutine Elochks verifies that the size limits for the El processor are not violated. These size limits
include limits on the number of nodes per element (cumrently set to 300) and the number of degrees of free-
dom per node (currently set to 6). The include files and subroutines used by El0chks are listed in Table 9.12.

Table 9.12. include Files and Subroutines Used by Subroutine El0chks

Subordinate Utility
Include Files Subroutines Subroutines
el0lim.inc
eloptr.inc None ERR
gsymbol.inc

9.3.3.4 Subroutine E/Ocmd

Subroutine El0cmd parses the command input line for the El processor. The include files and
subroutines used by El0cmd are listed in Table 9.13

Table 9.13. include Flles and Subroutines Used by Subroutine E/Ocmd

Subordinate Utiiity
Inciude Flies Subroutines Subroutines
None None CCLVAL, CLOADQ

A Generic interface Element for COMET-AR

9. Developer interface June 22, 1994

9.3.3.5 Subroutine El0Ocrf

Subroutine El0crf forms computational reference frames (in the form of normals, path and surface tan-
gents) along the interface.The include files and subroutines used by El0crf are listed in Table 9.14.

Table 9.14. Inciude Files and Subroutines Used by Subroutine Efocrf

Subordinate Utliity
Include Flles Subroutines _ Subroutines
elocmn.inc GSCROS, GSNORM,
ei0lim.inc None GSDéT, ERR !
gsymbol.inc

9.3.3.6 Subroutine El0csm

Subroutine E0csm saves the interface element general summary and element summary attributes in the
CSM data object. The include files and subroutines used by El0csm are listed in Table 9.15.

Table 9.15. inciude Files and Subroutines Used by Subroutine El0csm

Subordinate Utllity
inciude Files Subroutines Subroutines
el0cmn.inc
el0com.inc
ei0lim.inc None CSM+«, ERR
eloptr.inc
qsymbol.inc

1 9.3.3.7 Subroutine El0def

Subroutine El0def processes the DEFINE command class. This class is currently limited to the DEFINE
ELEMENTS and DEFINE FREEDOMS commands. The include files and subroutines used by Elodef are
listed in Table 9.16.

Table 9.16. Include Files and Subroutines Used by Subroutine Elodet

Subordinate Utility
include Flles Subroutines Subroutines
ei0com.inc
ei0lim.inc
el0ptr.inc El0defe, Ei0deff ERR
gsymbol.inc

9-18 A Generic interface Element for COMET-AR

June 22, 1894 9. Deweloper Interface

9.3.3.8 Subroutine E/Odefe

Subroutine Efddefe processes all of the subcommands and qualifiers associated with the DEFINE ELE-
MENTS command. It also performs or directs all database interaction required for this command. The include
files and subroutines used by ElOdefe are listed in Table 9.17.

Table 9.17. Include Flles and Subroutines Used by Subroutine El0detfe

Subordinate . Utility

Include Flles Subroutines ' Subroutines
ei0cmn.inc CLread, iclear, Rclear,
el0com.inc ElOedef, EIOD, El0defs, CLVALI, CLVALS,
elolim.inc Elochks, Elocsm, ElOelt, | GMCODn, ERR, CSM+,
eloptr.inc Elonod NCT+, NDT+, NVTe,

gsymbol.inc CLput, CL2CL

9.3.3.9 Subroutine El0deff

Subroutine EI0deff processes the DEFINE ELEMENTS command. It also performs or directs all the data-
base interaction required for this command. The include files and subroutines used by El0deff are listed in
Table 9.18.

Table 9.18. Include Files and Subroutines Used by Subroutine El0deff

Include Files Subroutines Subroutines
elocmn.inc
fmﬁc None GMco,eg,rfSEl:é NTT,
eioptr.inc !
gsymbol.inc

9.3.3.10 Subroutine El/Odefs

Subroutine El0defs defines the interface element path variables and coordinates. The include files and
subroutines used by El0defs are listed in Table 9.19.

Table 9.19. Iinclude Flies and Subroutines Used by Subroutine Ei0defs

Subordinate Utility
Include Files Subroutines Subroutines
elocmn.inc

elolim.inc El utilitles None
gsymbol.inc

A Generic interface Element for COMET-AR 9-19

9. Developer interface June 22, 1984

9.3.3.11 Subroutine El0edef

Subroutine El0edef is a utility subroutine which determines the finite element types along the interface.
Eloedef creates a table of adjacency information which lists the element types connected to each interface
node. The include files and subroutines used by El0edef are listed in Table 9.20.

Table 9.20. Include Flles and Subroutines Used by Subroutine El0edef

Subordinate Utliity
Include Files Subroutines Subroutines
elocmn.inc
ei0lim.inc El utilities None
gsymbol.inc

9.3.3.12 Subroutine El0elt

Subroutine Elf0elt saves the element data in element data objects. This subroutine is only called during
the DEFINE ELEMENTS command execution. The include files and subroutines used by E/Oelt are listed in
Table 9.21.

Table 9.21. Include Flles and Subroutines Used by Subroutine El0e/t

Subordinate Utility
Include Flies Subroutines Subroutines
el0cmn.inc
elocom.inc
GMCODn, CSM~, EDT+,
elolim.inc None , CSH
el0ptr.inc
gsymbol.inc

9.3.3.13 Subroutine El/0end

Subroutine El0end ends processing. The include files and subroutines used by El0end are listed in Table
9.22.

Table 9.22. include Flies and Subroutines Used by Subroutine El0end

Subordinate Utility
Inchude Files Subroutines Subroutines
None None EndPro

9-20 A Generic Interface Element for COMET-AR

June 22, 1994 9. Deweloper intertace

9.3.3.14 Subroutine El0find

Subroutine El0find is a utility subroutine which creates a list of nodes and their coordinates for each sub-
structure. This list is used in the definition of the interface element path. EI0find processes any filters on the
coordinates and/or node numbers which may have been specified by the user. Only the nodes which pass
through the various coordinate and nodal filters are listed. The include files and subroutines used by El0find
are listed in Table 9.23.

Table 9.23. Include Flles and Subroutines Used by Subroutine El0find

Subordinate Utility
include Flles Subroutines Subroutines
ei0cmn.inc
el0com.inc
GMCODn, NDT+, NCT+,
ei0lim.inc None ERR
elOptr.inc
qsymbol.inc

9.3.3.15 Subroutine ElOfrm

Subroutine El0frm is the driver routine for the element matrix formation. EI0frm both reads and writes the
required data from and to the database. The include files and subroutines used by E/Ofrm are listed in Table
9.24.

Table 8.24. Include Files and Subroutines Used by Subroutine EiOfrm

Subordinate Utliity
include Flles Subroutines Subroutines
elocmn.inc
el0com.inc GMCODn, CSM«, EDT~,
eiolim.inc Elomix ERT+, EMT+, EAT+,
eloptr.inc NDT«, NTT+, NAT+, ERR
gsymbol.inc

9.3.3.16 Subroutine El0Olog

Subroutine El0log is a utility which constructs the logical command flags from the El command input line.
The include files and subroutines used by El0log are listed in Table 9.25.

Table 8.25. Include Flles and Subroutines Used by Subroutine El0log

Subordinate Utiilty
Include Files Subroutines Subroutines
elofig.inc
eioptr.inc None ERR, GSCRI
gsymbol.inc

A Generic Interface Element for COMET-AR 9-21

9. Developer interface June 22, 1994

9.3.3.17 Subroutine E/Omtx

Subroutine EfOmtx forms the appropriate element matrix. Currently the implementation is limited to for-
mation of the material stiffness matrix for linear elastic materials. The include files and subroutines used by
EI0mtx are listed in Table 9.26. '

Table 9.26. Include Files and Subroutines Used by Subroutine EiOmitx

Subordinate . Utility
include Flies Subroutines) Subroutines
eiocmn.inc
el0com.inc
elolim.inc EIOKM (EI cover routine) GSCLRv, MID2
elOptr.inc
qgsymbol.inc

9.3.3.18 Subroutine ElOnod

Subroutine ElOnod saves the nodal data in the database. Efgnod is called only during the execution of

the DEFINE ELEMENTS command. The include files and subroutines used by ElOnod are listed in Table
9.27.

Table 9.27. Include Flles and Subroutines Used by Subroutine E/Onod

Subordinate Utility
Include Files Subroutines Subroutines
el0cmn.inc
ei0com.inc
GMCODn, CSM+, NDT-,
:llooztg::cc None NCT+, NAT+, ERR
qsymbol.inc

9.3.3.19 Subroutine El0res

Subroutine ElOres processes the RESET commands. The include files and subroutines used by Elores
are listed in Table 9.28.

Table 9.28. Include Flies and Subroutines Used by Subroutine El0res

Subordinate Utllity
Include Flles Subroutines Subroutines
elocom.in¢c
elolim.inc None CMATCH, ICLVAL,
el0ptr.inc ICLVAL, cCLVAL
qsymbol.inc

9-22 A Generic Imerface Element for COMET-AR

June 22, 1884 8. Deweloper Interface

9.3.3.20 Subroutine ElDset

Subroutine El0set initializes the logical device indices and the data object names if RESET is NOT used
to perform these tasks. The include files and subroutines used by El0set are listed in Table 9.28.

Table 9.29. Include Flles and Subroutines Used by si.lbroutlne El0set

Subordinate Utility
include Files Subroutines Subroutines
eiocmn.inc
elocom.inc
el0lim.inc None GMBUDn, GMCODn
eloptr.inc
qsymbol.inc

9.3.3.21 Subroutine ElOtran

Subroutine ElOtran forms the transformation matrices from the edge and interface to global reference
frames using the normals and tangents created and saved during the DEFINE ELEMENTS operation. The

include files and subroutines used by ElOtran are listed in Table 9.30.
Table 9.30. Include Files and Subroutines Used by Subroutine El0tran

Subordinate Utility
Include Files Subroutines Subroutines
elocmn.inc
ei0lim.inc None None
gsymbol.inc

9.3.4. References

9.3-1 Felippa, C. A, The Computational Structural Mechanics Testbed Architecture: Volume Il - The
Interface, NASA CR 178386, December 1988.

9.3-2 Stanley, G. M. and Swenson, L., HDB Object-Oriented Database Utilities for COMET-AR, NASA CSM
Contract Report, August, 1992.

9.3-3 Felippa, C. A., The Computational Structural Mechanics Testbed Architecture: Volume IV - The Global-
Database Manager GAL-DBM, NASA CR 178387, January 1989.

9.3-4 Staniey, G.M., Hurlbut, B., Levit, ., Stehlin, B., Loden, W., and Swenson, L., COMET-AR User’s
Manual, LMSC Report #P032583, 1993.

A Generic Intertace Element for COMET-AR 9-23

9. Developer interface June 22, 1994

THIS PAGE INTENTIONALLY BLANK

9-24 A Generic imertace Element for COMET-AR

June 22, 1994 9. Deweloper Interface

9.4. The Generic Interface Element Processor Cover

9.4.1. General Description

The interface element cover is a single file, called e/*_cover.ams, which contains several subroutines
each of which the developer of new interface elements must customize. Each interface element developer
must create a new file, replacing the * in the file name with-a processor number (e.g., é/1_cover.ams,
ei20_cover.ams). The subroutines in the cover act as translators between the generic shell part of the pro-
cessor and the developer-written kemels. The calls from the shell to the cover routines are standard. The
developer must fill in calls to the appropriate kernel routines using the data passed through to the cover sub-
routines from the shell. If sufficient data has not been passed down to a specific cover routine, the developer
should first look 1o the include files listed in the previous section. If incorporating the use of one or more
include files still does not provide all of the required information, a revision to the basic assumptions for the
shell may be required and the developer should contact COMET-AR maintenance personnel.

In the following section, a summary of the currently required cover subroutines is listed. The final section
contains an example of each of these cover routines.

9.4.2. Required Subroutines

The interface element implementation is currently limited to linear, static, elastic analysis. Therefore, the
currently active cover subroutines are those which supply the functionality which falis within these limitations.
Table 9.31 provides a summary of the active subroutines. As new capabilities are added, new cover routines

will be added.

Table 9.31. Summary of el_cover.ams Subroutines

Subroutine Name Function
Called during the DEFINE ELEMENTS command. This subroutine
EIOD must set up the defs and ctis arrays and define the element and
processor names.

Called during the FORM STIFFNESS/MATL command. This
subroutine must pass the element stiffness matrix (in the proper
computational frames) for the current interface element back to the
shell.

9.4.3. An ei+_cover.ams Example

The example given in this section provides cover routines EJOD and EJOKM for the current version of the
EN processor. Each subroutine is listed and annotated. A developer of new interface elements need only
copy the el_cover.ams template file (which contains both subroutines) into a file named e/*_cover.ams
(e.g., I3_cover.ams) and make changes as needed for the specific element implementation.

A Generic inerface Element for COMET-AR 8-25

PRECEDING PAGE BLANK NOT FILMED

9. Developer interface

June 22, 1984

9.4.3.1 The EIOD Subroutine

This subroutine initializes element definition variables (including the element and processor names) and
calls the element kemel to DEFINE ELEMENTS. The current version of El1 permits either user or automatic
definition of the number of pseudo-nodes along the interface element. It diso requires the definition of alpha-
nodes, which are defined by the element kemnel (no user selection of alpha-nodes is permitted). Table 9.32 is
an annotated listing of the EIOD subroutine currently used in the El1 processor. Note that the calling
sequence for subroutine EIOD, the argument type declarations, and usually the include files will be the same

(namely, the one listed in the Table) for every El processor.

Table 9.32. Listing of the El1 Processor EAOD Subroutine for the E!1 Processor

C=DECK EIOD
C=PURPOSE Element Definition Cover Routine for Interface Elements.
C=BLOCK FORTRAN
subroutine EIOD (EltNam, EltPro, EltTyp, EltNum, defs,
Arguments listed here 1 ssNdofn, ssDofn, nss, ssnode,
are defined as per the 2 ssnn, ssdofs,
inciude files in previous 3 sstelt, ssnelt, nAlpha, nAlphaT,
sections. 4 aNodes, ieDofn, ieNdofn, ieNen, nPn,
s nape, ssfid, status)
Include Files
Include selected include 'ei0lim.inc*
common blocks and include ‘eiOptr.inc*
parameters include °'gsymbol.inc’

Argument Declarations
character*(*) EltNam ! Element Name
character*(*) EltTyp ! Element Type
character*(*) EltPro ! Element Processor
integer EltNum ! Element Number
integer defs(*)
integer nss ! Number of SS
integer ssNdofn (MaxSpE) ! Number of dofs/node
integer ssDofn (maxDoF,MaxSpE) ! Active dofs/Ss

Typetheinputand integer ssnode (MaxNpS, MaxSpE) ! Interface podes
output arguments j..nteger ssnn (MaxSpE) ! Number of i-nodes .
integer ssdofs (MaxDOF,MaxNpS, MaxSpE) 1 dofs at each i-node
integer sstelt (MaxTyp,MaxNpS,MaxSpE) ! Element types
integer ssnelt (MaxNpS,MaxSpE) ! Number of f.e. types
integer nAlpha (MaxspE) ! Number of alpha dofs
integer nAlphaT ! Total number of alphas
integer aNodes (MaxSpE)
integer nPn ! Number of pseudo-nodes
integer NApPE ! number of alfas/f.e.
integer ssfid ! fine substructure id
integer status ! return status
Internal Declarations
characters{ CEltNum ! Character element number
Type the internal integer ieNen ! number of interface element nodes
variables integer ieNdofn ! number of dofs/node for the i.e.
integer ieDofn{MaxDOF) ! int. elt, active dofs
L 0 G I ¢

A Generic intertace Element for COMET-AR

June 22, 1994 9. Deweloper interface

Table 9.32. Listing of the El1 Processor E/OD Subroutine for the El1 Processor(Continued)

Check status if (status .ne. qOK) return
c ------------------------
c Define the Element Name:
€ mememmcmcccccmmm— -
Define the element call CI2CL (EltNum,CEltNum, 3, len)
. EltPro = '‘EI1l’
name for this El EleTyp = HYBV'
processor EltNam = EltPro(1:3)//'_'//EltTyp(1:4)//'_*//CEltNum(1:1len)
[B e L L L L L L P L ettt
c Define the number of alpha's and pseudo-nodes:
c ——
call HYBDEF (ssNdofn,ssDofn, nSS, ssnode,
Call Developer written 2 ssnn, ssdofs,
kernel routine with 3 sstelt, ssnelt, nAlpha, nAlphaT,
necessary arguments 4 aNodes, ieNen, ieNdofn, ieDofn, nPn, nApE, ssfid,
5 status)
g
c Set element parameters in the DEFS array:
€ e mmmmm e m e —— e
do 100 i = 1, Mdefs
defs(i) = 0
100 continue
c
defs(pdNEN) = ieNen
defs(pdCLAS) = gBeam
defs(paNIP) =1
Set the element defs(pdNDOF) = ieNdofn
definition parameters g:i:gg;;m = 1
uswbyth‘s element defs(pANEE} = ieNens*ieNdofn
type defs (pdSHAP) = gline
defs(pdNORO) = gTrue
defs(pdNLE} = 1
defs(pdNSE) =1
defs(pANNLT) = ieNen
defs(pdNNST) = 0
defs(pACLASS)= qBeam
defs(pASHAPE)= gLine
c
Retum to the shell return
end
C=END FORTRAN

9.4.3.2 The EIOKM Subroutine

This subroutine drives the formation of the element material stiffness matrix for each interface element. it
is invoked by the FORM STIFFNESS/MATL command. Uniike E/0D which both calls the kernel routine for
element definition and sets array values, EIOKM acts solely as a translator between the data passed in by the
shell and the data required by the kermnel routine. A new element developer therefore must only replace the
call to the kernel routine HYBFRM with a call to the appropriate new kemnel routine; all else about EJOKM will
remain the same for all interface element types. Table 9.33 is an annotated listing of the EIOKM subroutine
currently used in the El1 processor. Note that the calling sequence for subroutine EIOKM, the argument type
declarations, and usually the include files will be the same (namely, the one listed in the Table) for every El

processor.

A Generic Interface Element for COMET-AR 9-27

9. Developer intertace

June 22, 1994

Table 9.33. Listing of the El1 Processor E/OKM Subroutine

Arguments listed here
defined previously.

Inciude common blocks
and parameters

Type the input and
output arguments

Type the internal
variables

Check status

Call Developer written
kemel routine with
necessary arguments

Return to the shell

C=DECK EIOKM
C=PURPOSE Generic Material Stiffness Routine for Interface Elements

C=BLOCK FORTRAN

subroutine EIOKM (defs, ieDofN, nss, ieEtyp, pathss,
1 pathei, dspline, nAlpha, naAlphaT, aNodes,
2 nPn, Matrix, scale, nApE, ssnn,
3 ssTdg, ssTgc, eiTdg, eiTgs, status)
LI e i it e
c Include Files
c ———
include ‘eillim.inc’
include ‘eiOptr.inc'
include ‘*gqsymbol.inc’
c ———
c Argument Declarations
[e e R
integer defs(¥)
integer ieDofn(MaxDOF)
integer nSS ! Number of substructures
integer ieEtyp(MaxTYp,MaxNEN)
integer nAlpha(nss) ! Number of alpha dofs
integer nAlphaT ! Total number of alphas
integer aNodes (MaxSpE)
integer nPn ! Total number of pseudo-nodes
integer nApE{MaxSpE)
integer ssnn(MaxSpE)
integer status ! return status <1/0>

C=BLOCK DOUBLE

double precision
C=ELSE

real
C=END DOUBLE

2 scale, ! element scale factor
3 pathss {MaxNps, MaxSpE) ,
4 pathei (MaxPpE},
5 ssTdg (3, 3,MaxNpS, MaxSpE) ,
6 ssTgc (3, 3,MaxNpS,MaxSpE),
7 eiTdg(3, 3,MaxPpE, MaxSpE) ,
B eiTgs(3,3,MaxPpE),
9 Matrix(MaxNEE,MaxNEE) ! Element matrix
© oo e e e ——————————————— e =
c Internal Declarations
C m e e e e e mmmm—————————————
character®*4 CEltNum ! Character element number
integer ieNen ! number of i.e. nodes (total)
integer ieNdofn ! number of dofs per node for the i.e.
c ___
c L 0 66 I ¢
C e m e e e e e e de e r e e—mm e ————————— e
if (status .ne. gQOK) return
ieNdofn = defs (pANDOF)
ieNEN = defs (pdNEN)
call HYBFRM (nSsS, ieEtyp, nAlpha, nAlphaT, aNodes,
2 pathss, pathei, ieDofn, ssnn, ieNen, ieNdofn,
3 nPn, dspline,Matrix, scale, nApE,
4 s8sTdg, ssTgc, eiTdg, eiTgs, status)
return
end

C=END FORTRAN

9.4.4. References

None.

9-28

A Generic Interface Element for COMET-AR

June 22, 1994

9. Dewveloper imerface

9.5. makefile Example

The creation of an executable interface element processor is a two step process. The first step must be
taken by COMET-AR maintenance personnel and is the creation of object files of the shell subroutines.
Should problems arise when linking with the shell subroutines or when using shell parameters, the interface
element developer should seek assistance from COMET-AR maintenance personnel. The second step in the
creation of an executable interface element processor is the creation of the actual El processor executable.
Table 9.34 contains a listing of the makefile used to create the EI1 processor exectuable (which can be found
in SAR_EIPRC/makefile.eip). B

Processor Name

Set Fortran Flags
and Max keys

Compilation rules

Define Library
Objects to be
used in the Link

Create an
executable file

Dependencies

Table 9.34. Ei1 Processor makefile Exampile

.IGNORE:

.SUFFIXES:

.SUFFIXES: .o .ams

Set default name for processor here
ei=eil

FC = fc

FFLAGS = -c -02 -72 -p8

MAXKEYS = NICE SINGLE CONVEX MALLOC EXTP
.ams.o:

rm -f $*.tmp

rm -f $*.f

include -i $*.ams -0 $*.tmp -d $(EIOINC)
max /wc/for/sic/ti/machsunix -i $*.tmp -o $*.f $(MAXKEYS) S$(EIQOKEY)
- rm $*.tmp

S(FC) -c S(FFLAGS) $*.f >$*.lis 2>&l

E10 = /usr/uS/gimmp/ar/mods/ei
EIOINC = /usr/uS/gimmp/ar/mods/inc
CcsM = /csm

AR = fusr/u2/newlock/ar
AR_LIB = $(AR}/1ib

AR_INC = S${EI0)

UTL = $(CSM)/sam/utl

PRO_LIB = $(AR_LIB)/prolib.a
HDB_LIB = $(AR_LIB)/hdblib.a
DB_LIB = $(AR_LIB)/dblib.a

UTLS_LIB = $(AR_LIB)/sutl.a
ARUTL_LIB = S${(AR_LIB)/arutl.a

GEN_LIB = $(AR_LIB)/genlib.a
LIBOBJS = $(AR_LIB)/gsutil.a $(AR_LIB)/crutil.a
NICELIBS = $(AR_LIB)/clp86lb.a \
$(AR_LIB) /gal86lb.a \
$(AR_LIB) /dmg86lb.a \
${AR_LIB)/utlBélb.a \
$ (AR_LIB) /bioB61lb.a
LIBS = $(PRO_LIB) $(UTLS_LIB) $(ARUTL_LIB) \
$ (HDB_LIB) $(DB_LIB) $(GEN_LIB) $(LIBOBJS) $(NICELIBS)
EI_OBJS = $(EIO)/ei_shell.a $(ei)_cover.o $(ei)_kernel.o

#

$(ei): $(EI_OBJS) $(LIBS)

S(FC) S$(LFLAGS) -o $(ei) S(EIO)/main.o $(EI_OBJS) ${(LIBS)
cp *.f ..

S(ei)_cover.o : $(ei)_cover.ams hyblim.inc
S(ei)_kernel.o : $({ei)_kernel.ams hyblim.inc

A Generic Imertace Element for COMET-AR

9. Developer interface June 22, 1984

THIS PAGE INTENTIONALLY BLANK

9-30 A Generic intertace Element for COMET-AR

June 22, 1994 9. Developer interface

A Generic intertace Element for COMET-AR 9-31

June 22, 1994 9. Developer Interface

A Generic intertace Element for COMET-AR 9-32

June 22, 1994 V1. Data Objects

Part Vl
DATA OBJECTS

A Generic interface Element for COMET-AR vI-1

p 3| 39 PRECEDING PAGE BLANK NOT FILMED
E

3

V1. Data Objects

June 22, 1994

THIS PAGE INTENTIONALLY BLANK

vi-2

A Generic Interface Element for COMET-AR

June 22, 1894 10. New Data Objects

10. New Data Objects

10.1. Overview

The implementation of the interface element required the creation of several new nodal and element
attribute tables. This Chapter describes these new objects and is outlined as follows:

Table 10.1. Outline of Chapter 10: New Data Objects

Section Subject Function
2 New Nodal Objects Provide details on the new nodal data objects
(NATSs)
3 New Element Objects | Provide details on the new element data
objects (EATs)
A Generic intertace Element for COMET-AR 10-1

PRECEDING PAGE BLANK NOT FiLMED

10. New Data Objects June 22, 1954

THIS PAGE INTENTIONALLY BLANK

10-2 A Generic Imertace Element for COMET-AR

June 22, 1994 10. New Data Objects

10.2. New Nodal Data Objects

10.2.1. General Description

The interface element implementation required several new nodal attribute tables. These new nodal data
objects are summarized in Table 10.2 and described in subsequent sections.

Table 10.2. Summary of New Nodal Attribute Tables (NATs)

Object Name Purpose Creator

NODAL.IEID...mesh identifies the intertace elements to which the El
pseudo-nodes and aipha-nodes are attached.

NODAL.NIDS...mesh Identifies the original node number of the master MSTR
model nodes.

NODAL.TANGENTS...mesh | Stores path tangents for the pseudo-nodes. El

NODAL.TYPE...mesh identifies the node type (pseudo-node, alpha- El (MSTR modifies)
node, or finite element node).

In the following discussion, the term “i-node” denotes, collectively, the pseudo-nodes and alpha-nodes.

10.2.2. Nodal Attribute Table (NAT): NODAL.IEID...mesh.

The NODAL.IEID...mesh table contains a single integer for each of the I-nodes. The object is created in
the El processor and is composed of the element identification number of the interface element to which
each |-node is attached. The object format is:

: “=iNAT NODALJEID..mesh: ;
Attribute I-node 1 - I-node n
NodAtt IntElt, IntElt,,

where IntElt is the element identifier of the interface element to which I-node i is attached. Note that each |-
node is, upon creation, attached to only one interface element; this interface element number is listed as
IntElt. This data object exists solely in the library containing all and only interface elements.

10.2.3. Nodal Attribute Table (NAT): NODAL.NIDS...mesh.

The NODAL.NIDS...mesh table contains a single number for each of the finite element nodes and |-
nodes. This object is created by the MSTR processor during the node renumbering process and contains the
original node number of each node in the master model. The object format is:

A Generic intertace Eiement for COMET-AR 103

PRECEDING PAGE BLANK NOT FILMED

10. New Data Objects June 22, 1994

. “NAT: ~NODAL.NIDS..mesh
Attribute fe_Node 1...nfe p_Node 1..npn | a_Node 1...nan
NodAtt Nid; ... Nidp Nid ... Nidp, Nid, ... Nid 5,

where Nid is the original node number, nfe is the number of finite element nodes, npn is the number of
pseudo-nodes, and nan is the number alpha-nodes. :

10.2.4. Nodal Attribute Table (NAT): NODAL.TANGENTS...mesh.

The NODAL.TANGENTS...mesh table contains a vector for each of the I-nodes. This object is created
by the El processor during the element definition and contains the path tangent for each pseudo-node and
2eroes for each alpha-node. The object format is:

w1 ANATs - NODALTANGENTS..mesh -
Attribute i-node 1 cen I-node n
NodAtt(3) tangent, ... tangent,,

where tangent is the tangent vector along the interface element path for the pseudo-nodes and zeroes for the
alpha-nodes. This data object exists solely in the library containing all and only intertace elements.

10.2.5. Nodal Attribute Table (NAT): NODAL.TYPE...mesh

The NODAL.TYPE...mesh table is created in the El processor and recreated by the MSTR processor.
The version of the object used by the El processor contains flags for each of the I-nodes. All of the interface
elements are stored in a single library, so there will be one NODAL.TYPE...mesh object containing all of
these new i-nodes. Pseudo-nodes are listed first for each element, alpha-nodes are listed second for each
element. The object format is:

NAT: :NODAL.TYPE...mesh
Attribute I-node 1 e i-node n
NodAtt Type, cen Type,

where Type will be set to a value of gD or qAlpha corresponding to displacement and traction type nodes
(pseudo- and alpha-nodes) respectively. The user may define the number of displacement type nodes
although 1t is recommended that automatic definition be incorporated by the developer whenever possible.

The modified object created by the MSTR processor, contains these flags for ali of the nodes in the mas-
ter model (i.e., for the finite element nodes, the pseudo-nodes, and the alpha-nodes). The form of the object
is the same as the original form except that the finite element nodes are all listed first, all of the pseudo-nodes
follow, and all of the alpha-nodes are listed at the end of the table.

104 A Generic Interface Element for COMET-AR

June 22, 1994 10. New Data Objects

10.3. Element Data Objects

10.3.1. General Description

For finite elements, each element attribute table contains potentially one record per finite element.
Because of the variable nature of the interface element (that is, each interface element may have a different
number of nodes, pseudo-nodes, and alpha-nodes), each interface element is treated as a different element
type. Therefore, each element table contains data for only one imerface element. Several new element
attribute tables have been created. These new objects (all created by the El processor) are summarized in
Table 10.2 and discussed in detail in subsequent sections.

Table 10.3. Summary of New Element Attribute Tables (EATS)

Object Name

Purpose

EltName.ELTYPE...mesh

List of finite element types to which each finite element
interface node is attached.

EitName.NODSS...mesh

Substructure identifier for each node of the element.

EltName NORMALS...mesh

Normal vectors for finite element nodes and pseudo-nodes.

EltName.PARAMS...mesh

Element integer parameters.

EltName.SCALE...mesh

Scale Factor.

EitName.SCOORD...mesh

Path coordinates for all of the element nodes.

EltName.SSID...mesh

List of substructures to which the element is attached.

EltName.SSLDI...mesh

Logical device index (idi) of each substructure library.

EltName.TANGENT_S...mesh

Element path tangent vectors for finite element nodes and
pseudo-nodes.

EtName. TANGENT_T...mesh

Element surface tangent (perpendicular to the path
tangent) for finite element nodes and pseudo-nodes.

EitName.TGC...mesh

Computational to global transformation matrices for the
finite element nodes in each element.

in the following discussion, the phrase “element nodes™ denotes all of the finite element nodes, the
pseudo-nodes and the alpha-nodes associated with an element. In all interface element element data objects
(not just those listed in this section), the finite element nodes are listed first, the pseudo-nodes follow, and the
alpha-nodes are at the end of the list. The total number of element nodes is therefore

ns

2 (nunborof nodes along interface for substructure i) +
i=1
where ns is the number of substructures attached to the element.

number of evenly-spaced pseudo-nodes +

Nen = number of alpha-nodes

A Generic Inwrtace Element for COMET-AR 10-5

10. New Data Objects June 22, 1994

10.3.2. Element Attribute Table (EAT): EltName.ELTYPE...mesh.

The EltName.ELTYPE...mesh table contains a list of the finite element types attached to each node of
the interface element.

st HERATy (ERName.ELTYPE...mesh
Attribute Element 1
EltAtt(*) ElType(i,j,k)

where Eltype(i,j.k) lists the element types, j, connected to interface node i of substructure k. The finite
element types are described by the number of nodes along the edge of the finite element. For exampie, if the
ith node of substructure 1 is connected to a four and a nine node element along the interface the array values
will be Eltype(i,1,1)=2, Eltype(i,2,1)=3. The nodes are in substructure order and range over the maximum
number of finite element element types. Zeroes are stored for the pseudo-nodes and the alpha-nodes.

10.3.3. Element Attribute Table (EAT): EltName.NCDSS...mesh.

The EltName.NODSS...mesh table contains a list of the substructures attached to each node of the
interface element.

. “EAT: EHName.NODSS...mesh -
Attribute Element 1
EltAtt(Nen) NodSS,NodSS,,...NodSSyen

where Nen is the total number of nodes (as defined previously) and NodSS; is the substructure to which the ith
node is connected. A value of 0 (zero) indicates that the node is a pseudo-node or an alpha-node. This object
provides a cross reference which allows all merge functions to be performed in the MSTR processor and not

in the El processor.

10.3.4. Element Attribute Table (EAT): EltName.NORMALS...mesh.

The EltName.NORMALS...mesh table contains a normal vector for each pseudo-node (in the interface
frame) and each finite element node (in the edge frame) of the intertace element. A zero vector is saved for
the alpha-nodes as they have no physical location.

‘EAT: ‘EitName.NORMALS...mesh
Attribute Element 1
EltAtt(3,Nen) Vector, ,Vectorz....VectorN.n

where Nen is the total number of nodes (as defined previously) and Vector; is the unit normal vector for the ith
element node.

10-6 A Generic Intertace Element for COMET-AR

June 22, 1994 10. New Data Objects

10.3.5. Element Attribute Table (EAT): EltName.PARAMS...mesh.

The EitName.PARAMS...mesh table contains a list of the interface element integer parameters.

LEAT: .EtName.PARAMS..mesh

Attribute Element 1
EltAtt(*) Params(1),Params(2)...
Currently, this object is used to store the following integer data:
Attribute Meaning

Params(1) Number of substructures connected through this eiement.

Params(2) Order of interpolation used for the deformation along this interface
element (1,2,3 corresponds to a piecewise linear, quadratic spline, and
cubic spline functions respectively).

Params(3) Order of interpolation used for the geometry along this interface
element (1,2,3 corresponds to a piecewise linear, quadratic spline, and
cubic spline functions respectively).

Params(4) Number of pseudo-nodes along this interface element.

Params(5) Number of alpha-nodes along this interface element.

Params(6:n6) Number of alpha-nodes along each substructure.
né6 = S+(number of substructures attached to this element).

Params(n6+1:n7) Number of alpha-nodes per element for each substructure
n7 =n6+(number of substructures attached to this element).

Params(n7+1:n8) Number of {.e. nodes per substructure along this interface element.
n8 =n7+(number of substructures attached to this element).

Params(n8+1) Drilling freedom for this interface element.

Params(n8+2) Drilling freedom suppression flag for this interface element.

10.3.6. Element Attribute Table (EAT): EltName.SCALE...mesh.

The ERName.SCALE...mesh table contains a scale factor for the interface element.

EAT: EltName.SCALE...mesh
Attribute Element 1
EltAtt Scale

where Scale is an optional real scale factor used to ensure that the stiffness matrix does not become ili-
conditioned.

A Generic Inwrface Element for COMET-AR 10-7

10. New Data Objects June 22, 1884

10.3.7. Element Attribute Table (EAT): EltName.SCOORD...mesh.

The ErtName.SCOORD...mesh table comains a list of the path coordinates for all interface element
nodes.

" EAT: ERName.SCOORD..mesh
Attribute Eiement 1
EltAtt(Nen) $1,82,83, - SNen

where 8, is the interface path coordinate for ith element node. While the curmrent interface element

implementation will only accommodate a one-dimensional interface, this object may, in general,
accommodate a two dimensional interface.

10.3.8. Element Attribute Table (EAT): EitName.SSID...mesh.

The EitName.SSID...mesh table contains a list of the substructures attached to the element.

.. EAT: EnName.SSID..mesh
Atftribute Element 1
EltAtt(MaxSpE) SSID},SSID,, ... SSTDpaxspE

where MaxSpE is a parameter which defines the maximum number of substructures per interface element
and SSID; is the substructure to which this element is connected.

10.3.9. Element Attribute Table (EAT): EltName.SSLDI...mesh.

The EitName.SSLDI...mesh table contains a list of the substructures attached to the element.

Attribute Element 1
EltAnt(MaxSpE) SSLDI14,SSLDI, ... SSLDIMayspe

where MaxSpE is a parameter which defines the maximum number of substructures per interface element;
SSLDJ; is the logical device index of the ith substructure.

10-8 A Generic Intertace Element for COMET-AR

June 22, 1894 10. New Data Objects

10.3.10. Element Attribute Table (EAT): EitName.SSTGC...mesh.

The EltName.SSTGC...mesh table contains the computational-to-global transtormation vector for each
finite element node of the interface element. A zero vector is saved for the |-nodes.

‘EAT: ‘EtName.SSTGC...mesh
Attribute Element 1
EltAtt(3,Nen) Vectory,Vectors,...Vectorygn

where Nen is the total number of nodes (as defined previously) and Vector; is the finite element nodal
computational-to-global vector for the ith element node.

10.3.11. Element Attribute Table (EAT): EitName.TANGENT_S...mesh.

The EitName.TANGENT_S...mesh tabie contains a tangent vector along the interface for each pseudo-
node and each finite element node of the interface element. A zero vector is saved for the alpha-nodes as
they have no physical location.

EAT:,,_.,EItName.’TANGENT_;s..;mesn
Aftribute Element 1
EltAtt(3,Nen) Vector,Vectors,...Vectoryg,

where Nen is the total number of nodes (as defined previously) and Vector; is the unit tangent vector along the
interface for the ith element node.

10.3.12. Element Attribute Table (EAT): EitName.TANGENT_T...mesh.

The EtName.TANGENT _T...mesh table contains a transverse surface tangent vector for each pseudo-
node and each finite element node of the interface element. A zero vector is saved for the alpha-nodes as
they have no physical location.

EAT: EitName.TANGENT T..mesh
Aftribute Element 1
EltAtt(3,Nen) Vector,Vectory,...Vectorye,

where Nen is the total number of nodes (as defined previously) and Vector; is the unit surtace tangent vector
for the ith element node.

10.3.13. References

10.3-1 Stanley, G. M. and Swenson, L., HDB Object-Oriented Database Utilities for COMET-AR, NASA CSM
Contract Report, August, 1992.

A Generic interface Element for COMET-AR 10-9

10. New Data Objects June 22, 1994

THIS PAGE INTENTIONALLY BLANK

10-10 A Generic interface Element for COMET-AR

June 22, 1994 Appendix A. Glossary

Appendix A.
GLOSSARY

A Generic interface Element for COMET-AR A-1

PRECEDING PAGE BLANK NOT FILMED

Appendix A. Glossary

June 22, 1994

THIS PAGE INTENTIONALLY BLANK

A2

A Generic Interface Element for COMET-AR

June 22, 1894 Appendix A. Glossary

Appendix A: Glosséry

alpha-nodes Nodes generated by the interface element processor which are
assigned the traction degrees of freedom (if any exist) along the
interface. Aipha-nodes have no meaningtul physical location at this

time. ,

analysis procedure A sequence of commands. written in the COMET-AR command
language CLAMP. An analysis procedure may call upon other
procedures or processors.

analysis processor A software processor which performs one or more specific analysis
tasks.

application procedure An analysis procedure used to solve a specific application problem.
Will typically call analysis procedures and execute analysis
processors.

application The structural analysis problem to be soived.

AR (Adaptive Refinement) A type of analysis which invoives the automatic adaptation of the
finite element model to ensure a user-specified accuracy in the
soiution.

COMET-AR Acronym for the COmputational MEchanics Testbed - with Adaptive
Refinement. A general-purpose, modular, structural analysis
software system.

command lanhguage An interpretable language consisting of a stream of commands that
controls the execution of a software system.

computational database The database used to store the data associated with the finite
element model, the solution, and, possibly, post-processed data.

computational frame Reterence frame in which the solution is obtained at each node.

cover procedure A command language procedure used to mask the execution of one
Or mMore processors.

database A collection of stored data.

data library A term used to refer to a named file within a COMET-AR database.

data object A tabular data structure that contains both data attributes and
utilities that perform operations on the data.

data set The data attributes part of a data object.

A Generic interface Element for COMET-AR A3

PRECEDING PAGE BLANK NOT FILMED

Appendix A. Glossary June 22, 1994

developer A person that develops new processors and/or procedures which
implement new methods (e.g., a new type of finite element, a new
type of solution strategy, a new interface element). Those who use
the COMET-AR system are typically divided into two groups: users
and developers. -

directive A special command record that is processed directly by CLIP and
not transmitted to the running processor.

edge frame Reference frame attached to the finite element edges along a
substructure edge. Defines the computational frame for the
alpha-nodes.

eloment frame Reference frame attached to each finite element.

GEP (Generic Element Processor) A software template for all COMET-AR structural element
processors; provides a common generic user and developer
intertace to such processors. Also reterred to as ES. Individual
processor names begin with ES (e.g., ES1, ES10).

global frame Fixed reference frame in which nodal coordinates are defined.

Interface element A special type of finite element which connects independently
created finite element models.

intertace frame Reference frame attached to each interface element. Defines the
computational frame for the pseudo-nodes.

iibrary file A term used to refer to a named file within a COMET-AR database.

macrosymbol A character string that character string that represents another
character string or a number. Like a variable name in FORTRAN.

master model A single model created by combining two or more finite element

nodal compatibllity

procedure

procedure argument

processor

models.

A one-to-one nodal comrespondence across substructure
boundaries.

A command language program written in CLAMP and delimited by a
procedure header (*procedure) and terminator ¢end) which may
be parameterized by arguments specified in a calling sequence.

A parameter specified in the header of a command procedure that
may be used to replace text within the procedure.

A semi-independent software program which exchanges information
with the database. Processors typically read data from and write
new data to the database.

A4

A Generic Invterface Element for COMET-AR

June 22, 1954

Appendix A. Glossary

pseudo-nodes

qSymbol

script file

substructure

template file

user

Nodes generated by the interface element processor which are
assigned the displacement degrees of freedom along the interface.
Pseudo-nodes are evenly spaced along the interface and are
assigned coordinates accordingly.

A FORTRAN integer parameter used in place of an explicit character
string. Several hundred pre-defined gSymbols are used in the
COMET-AR system.

A set of UNIX commands that perform a specific function (e.g., run a
particular analysis) and are placed within an executable file.

A semi-independent part of a global finite element model.
Substructures are typically used to extract local models from global
models and to model different components which are part of a larger
structure.

A file which provides the user with an example of the required input
for a given procedure or processor. Template files have been
provided for the interface element processors and control procedure.

Any individual that uses the COMET-AR system for performing an
analysis. Those who use the COMET-AR system are typically
divided into two groups: users and developers.

A Generic intertace Element for COMET-AR

AS

Appendix A. Glossary

June 22, 1994

THIS PAGE INTENTIONALLY BLANK

A6

A Generic imterface Element for COMET-AR

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 07040188

ion is d to

1 hour por eep

including the time for reviewing i i searching existing data

Public reporing burden for this collection of ink ag)
gatheri intaining the data needed, and completing and tewing the of cormments ding this burd or any other aspect of this)
collection of information, ‘-s% for reducing this burden, to Washing Hmw&wbu.mwmblmmmommmw. 1215 Jetferson Davis
Highway, Suite 1204, Arlinglon, VA 4302, and to the Otfics of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

2. REPORT DATE
March 1995

I, AGENCY USE ONLY (Lsave biank)

3. REPORT TYPE AND DATES COVERED
Contractor Report

4. TITLE AND SUBTITLE

A Generic Interface Element for COMET-AR

5. FUNDING NUMBERS

C NAS1-18000
C NAS1-19700

6. AUTHOR(S)
Susan L. McCleary and Mohammad A. Aminpour

WU 505-63-53-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lockheed Engineering and Sciences Company
Hampton, Virginia 23681-0001 and

Analytical Services and Materials, inc.
Hampton, VA 23681-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

 eemrerereemme——————————————————————————————————
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-195075

11. SUPPLEMENTARY NOTES
Langley Technical Monitor: Jerroid M. Housner

e ——————————————————————
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited
Subject Category 39

e —————
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report documents the implementation of an interface element capability within the COMET-AR software
system. The report is intended for use by both users of currently implemented interface elements and
developers of new interface element forumlations. For guidance on the use of COMET-AR the reader should
refer to Ref. 1-1. A glossary is provided as an Appendix to this report for readers untamiliar with the jargon of
COMET-AR. A summary of the currently implemented interface element formulation is presented in Section 7.3
of this repont. For detailed information on the formulation of this interface element, the reader is referred to Refs.

1-8 through 1-10.

[14. SUBJECT TERMS

T
17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

e e
18, SECURITY CLASSIFICATION

OF THIS PAGE
UNCLASSIFIED

vy
19. SECURITY CLASSIFICATION

15. NUMBER OF PAGES

Finite Element, Interface Element, COMET-AR, Shells, 196
Substructures, Global/Local Tt PAICE CODE
A09

Sy TS
20. LIMITATION OF ABSTRACT
OF ABSTRACT

NSN 7540-01-280-5500

PRECEDING PAGE BLANK N

Standard Form 298 (Rev. 2-89)
Preacribed by ANS! Sid. 239-18
298-102

OT FILMED

